

Imaging Principles 1

The Whole Picture

Steps of an MRI experiment

Rewriting the Bloch Equations in matrix formulation:

- No analytic solution for general B field, $\mathbf{B}(t)=B_x(t)\mathbf{e}_x+B_y(t)\mathbf{e}_y+B_z(t)\mathbf{e}_z$
- If $\mathbf{B} || \mathbf{e}_z$ ($\mathbf{B}_x = \mathbf{B}_y = 0$) the Bloch equations decouple: simple solutions
- These solutions are important for the encoding step (after excitation!)

static field $\mathbf{B} = B_o \mathbf{e_z}$ and $\mathbf{M}(t=0)=\mathbf{M}_0 \mathbf{e_x}$ (after 90° pulse)

static field $\mathbf{B} = B_o \mathbf{e_z}$ and $\mathbf{M}(t=0)=\mathbf{M}_0 \mathbf{e_x}$ (after 90° pulse)

Complex form:

$$\frac{dM_{\perp}}{dt} = \frac{dM_{x}}{dt} + i\frac{dM_{y}}{dt} = -\left(\frac{1}{T_{2}} + i\omega_{0}\right)M_{\perp}$$

$$M_{\perp}(t) = M_0 e^{-t/T_2} e^{-i\omega_0 t}$$

Time-varying gradient fields $B(t)\vec{e}_{\tau} =$

$$B(t)\vec{e}_z = (G(t)\cdot\vec{r})\vec{e}_z$$

$$M_{\perp}(t) = M_0 \exp\left[-\frac{t}{T_2} - i\omega_0 t - i\gamma \int_0^t \vec{G}(\tau) \cdot \vec{r} d\tau\right]$$

with
$$\vec{k}(t) \equiv \gamma \int_{0}^{t} \vec{G}(\tau) d\tau$$
 unit: m⁻¹ (spatial frequency)
follows $M_{\perp}(t) = M_{0} e^{-t/T_{2}} e^{-i\omega_{0}t} e^{-i\vec{k}(t)\cdot\vec{r}}$

MRI Signal Equation

If a time-varying gradient field is applied, then the MR signal is the Fourier Transform (FT) of the proton density distribution $M_0(\mathbf{r})$ (ignoring relaxation for now)

Imaging ?

During a (simple) MR experiment (e.g. FID, SE) an MR signal is received, which is the sum of all nuclear magnetic resonances within the entire sample.

However, since we do not have a spatial allocation, we cannot distinguish between the signals of different tissue structures.

Imaging: Spatial Encoding in Time

Remember: The basic idea of MRI

Make the precessional frequency a function of space!

- The "spectrum" then reflects spatial distribution.
- Linear field gradients of the B-field in z-direction, e.g. G_x = dB_z/dx
- One trick to get spatial information is already known:
 - ➔ Slice selective excitation
- But there are 2 dimensions left...

MR Scanner Components (simplified)

Gradient Coils: <u>linear</u> field variation

 $\Rightarrow \mathbf{B}(t) = (B_0 + \mathbf{G}(t) \cdot \mathbf{r})\mathbf{e}_z$

Gradient Coils: some facts

- typical range: 1-40 × 10⁻³ T/m
 e.g.: x=30 cm, B₀=1T, G=10 mT/m
 → B = 0.9985 T ... 1.0015 T
- rise time: 200-600 μs
- Inearity: 40-60 cm
- power: e.g. 500 A at 2000 V in short time, power in MW range
- need liquid cooling
- "make the noise"

Remember: Slice Selection

- Sinc-Pulse generates rectangular frequency distribution
- different gradient strength leads to slices with different thickness
- problem: Larmor frequency is different within slice thickness

Remember: Slice Selection

Slice Refocusing:

- phase dispersion factor is a linear function of position
- it is removed by the application of opposite z-gradient that produces a phase factor of exp(i γ G z τ/2)
- the gradient pulse is called "refocusing lobe" or "slice rewinder"

Institute of

- Idea: Use the fact, that the resonance frequency depends on the field strength
- Can we spatially modify the resonance frequency?
- Frequency encoding: apply gradient during data acquisition

$$\Delta \omega = \gamma G_{x} x$$

Source: Siemens, Magnete, Spins und Resonanzen

 Employing the Fourier Transformation allows one to interpret frequency information as spatial location

Institute of Neuroscience and Medicine

Source: Siemens, Magnete, Spins und Resonanzen

Larmor frequency is linearly dependent on spatial coordinate:

$$\omega(x) = \gamma(B_0 + G_x \cdot x)$$

object x (position)

MR signal of homogeneous sample with uniform field B₀

Field Gradient $G_x = dB_z/dx$ during signal acquisition:

Frequency Encoding: Sampling

- MR signal S(t) is digitalized by using an "analog to digital converter" ADC and a discrete timing interval Δt in a total acquisition window t_{aq}
- For the Fourier-analysis of the MR signal there are in total N = $t_{aq}/\Delta t$ measured data points: S(Δt), S(2 Δt), S(3 Δt), ..., S(N Δt)
- Spatial resolution in x-direction Δx is given by the sampling theorem: $\Delta x = FOV / N = 2\pi / (\gamma G_x N \Delta t)$
- With FOV: the maximum object diameter (Field of View), N: number of sampling points, G_x: gradient strength, Δt: sampling interval
- Example: with N = 256, Δt = 30 μs, Gx = 1.566 mT/m the spatial resolution in x-direction (pixel resolution in x) is:
 Δx = 1.953 mm and X = N Δx = 50 cm (= field-of-view FOV)

Frequency Encoding: Gradient Echo

Signal Equation with spatial frequencies:

$$k(t) = \gamma \int_{0}^{t} G(\tau) d\tau$$

$$S(t) = \int_{\text{object}} M_{0}(x) e^{-ik(t)x} dx \equiv S(k) = FT \left[M_{0}(x) \right]$$

$$M_{0}(x) = FT^{-1} \left[(k) \right] = \int_{0}^{\infty} S(k) e^{ik(t)x} dk$$

 Ideally, S(k) is Hermitian and therefore knowledge of S for k>0 is sufficient

 In reality S(k) contains phase-errors and the acquisition of positive and negative spatial frequencies increases the SNR (Signal-to-Noise-Ratio)

Phase Encoding

- Frequency encoding is applied to one spatial dimension, e.g. the xaxis. How to encode the y-axis?
- Switch on the y-gradient for a short time in order to modulate the spins' phase in y direction.
- <u>Repetition of the process with</u> <u>linearly varying phase</u> again encodes a frequency!

Phase Encoding

- phase encoding is performed by stamping an initial phase angle onto the excited spins
- after switching off the phase encoding gradient the magnetization is continuing to precede at the same frequency ω₀ but with different phase
- phase information of an activated MR-signal is linearly dependent on spatial coordinate, since Φ(y) = - γ G_y y T_{pe}

Frequency Encoding vs. Phase Encoding

Frequency Encoding vs. Phase Encoding

Timing for Phase and Frequency Encoding

Wait for T1 relaxation

The total acquisition time is given by the repetition time, TR, times the number of phase encode steps!

Institute of Neuroscience and Medicine

2D FT-Imaging: Frequency and Phase Encoding

General 2D Fourier Transform Signal Equation:

$$S(k_x, k_y) = e^{-i\omega_0 t} \iint M_0(x, y) e^{-ik_x x} e^{-ik_y y} dxdy$$

x-Sampling: Frequency Encoding

$$k_x(n\Delta t) = \gamma \int_{0}^{n\Delta t} G_x(\tau) d\tau = \gamma G_x^{\max} \left(-\frac{1}{2} T_{aq} + n\Delta t \right)$$

 $\Delta t = T_{aq}/N, n = 1, K, N$

y-Sampling: Phase Encoding

$$k_{y}(mTR) = \gamma \int_{(m-1)TR}^{mTR} G_{y}(\tau) d\tau = \gamma T_{y} \left(-G_{y}^{\max} + m\Delta G_{y} \right)$$

$$\Delta G_y = G_y^{\text{max}} / M, \quad m = 1, \mathsf{K}, M$$

TR TE RF signal G Z G G, max Х T_{aq} G ٧ G_vmax

• N×M signal Matrix S(k_x,k_y)

2D-FT gives image M₀(x,y)

Institute of Neuroscience and Medicine

Slide 27

Source: Siemens, Magnete, Spins und Resonanzen

Encoding **2D** spatial **Frequencies**

Spin distribution corresponding to the four labelled time points:

(1) immediately after excitation

- (2) midway after the y gradient has been turned on
- (3) just prior to turning off the ygradient;
- (4) after the x gradient has been left on

3

->>///-111--1111

->>1//-->

111/-

-111/-

<>!!//-

~~1//-

Note on Oblique Slices

 Gradient encoding can be applied in arbitrary orientation through superposition of physical gradients G_x, G_y, G_z

axial slice

coronal slice

Institute of Neuroscience and Medicine

Note on Oblique Slices Logical and Physical Gradient System

Logical Gradient System

- Slice-Select Gradient:
- Frequency-Encoding Gradient:
- Phase-Encoding Gradient:

Transform from logical coordinate system to physical coordinate system with rotation matrices:

The true physical orientation of the slice does not change the physics, and therefore we are dealing mainly with logical coordinates. Often, $G_x=G_R$, $G_y=G_P$, $G_z=G_S$ is used in textbooks.

G_

$$\begin{pmatrix} G_x \\ G_y \\ G_z \end{pmatrix} = \mathbf{R}_{\phi}(\alpha) \begin{pmatrix} G_R \\ G_P \\ G_S \end{pmatrix}$$

True or False?

- 1. Frequency Encoding Resolution is limited by long T1
- 2. Frequency Encoding Resolution is limited by short T1
- 3. Frequency Encoding Resolution is limited by long T2
- 4. Frequency Encoding Resolution is limited by short T2
- 5. Phase Encoding Resolution is limited by long T1
- 6. Phase Encoding Resolution is limited by short T1
- 7. Phase Encoding Resolution is limited by long T2
- 8. Phase Encoding Resolution is limited by short T2

... and what kind of limitations are these?

Imaging in Praxis: Spin Echo Sequence

Source: Siemens, Magnete, Spins und Resonanzen

Slide 32

10 November 2010

Source: NMR Relaxation Basics, Peter F. Flynn

Source: Siemens, Magnete, Spins und Resonanzen

Spin Echoes: in Motion

Spin Echoes: in Motion

Spin Echo Sequence: Slice Selection

Source: Siemens, Magnete, Spins und Resonanzen

Slide 37

Spin Echo Sequence: Phase Encoding

Spin Echo Sequence: Frequency Encoding

Source: Siemens, Magnete, Spins und Resonanzen

Slide 39

Slide 40

Spin Echo Sequence: Echo Generation

Multiple Spin Echoes: T₂ and T₂*

Slide 41

Summary

- MR Imaging uses gradients for a linearly spatial variation of the main field => spatially dependent Larmor frequeny
- Frequency Encoding: after slice selection, one dimension within the slice is position-encoded by a gradient pulse during data acquisition
- Phase Encoding: For the remaining dimension, the excitation has to be repeated where each time a linearly varying phase-shift is encoded.
- MRI signals are echo acquisitions. Both, gradient echoes or spin echoes are possible.