

An Introduction to the Basics of PET Imaging

N. Jon Shah Institute of Neuroscience and Medicine – 4 Research Centre Juelich 52425 Juelich GERMANY

Outline

Introduction

- PET Basics
- Example Measurement

Overview Processing Workflow

Required Data Corrections in Detail

- Attenuation
- Randoms
- Normalisation
- Compton Scattering
- Decay & Deadtime Correction
- Calibration

Example of Functional Imaging Using PET

Mental activity needs energy.

Substrates providing energy (glucose and oxygen) must be transported to the brain.

This transport can be observed with PET.

Water Isingtributed With Water body blood flows her to be started with the body

The ring detector records pairs of annihilation photons by looking into the object from different views

Two point sources emitting pairs of annihilation photons

Projections seen from around the head activity used: ¹⁸F-fluoro-deoxy-glucose

Image Reconstruction: Backprojection of the measured projection data and superposition

Analytic Filtered

Analytic Reconstruction by Filtered Backprojection

Algebraic Reconstruction by Iterative Solving of Matrix System

Mitglied der Helmholtz-Gemeinschaft

Metabolic Functions Visualised by "Natural" Tracer Molecules Labelled with Positron Emitters

 $H_2^{15}O \longrightarrow Perfusion$

H₂¹⁵O Cerebral blood flow

¹¹C-SDZ GLC756: dopamine receptors

¹⁸F-Altanserin: serotonin receptors

Visualisation of Radioactivity

¹⁸F-Altanserin ⇒ serotonin receptors

1.50 E06
1.29 E06 –
1.07 E06 –
8.57 E05 –
6.43 E05 –
4.29 E05 –
2.14 E05 –
counts/s

Quantification of Radioactivity Concentration

Measurement of ¹⁸F-altanserin uptake

From Radioactivity Concentration (kBq/ml) to Mass Concentration (µmol/ml)

Quantification of Mass Concentration

Measurement of altanserin concentration

Quantitation of Mass Concentration

Simultaneous PET-MR patient measurements

¹⁸Flour-Deoxy-Glucose-PET

simultaneous MR (T1 MPRAGE)

anatomical information

First Principle: Positron-Emission-Tomographie (PET)

3D data acquisition

144 crystals / block6 blocks / modul32 moduls

→ 27648 detector crystals

→ 227 million detector combinations (Lines-Of-Response)

BrainPET Data Formats (I)

List Mode (LM) Data:

list of detected coincidences in chronological order

store pairs of detector numbers

additional tags are periodically inserted:

- time tags
- count rate tags
- external trigger tags

BrainPET Data Formats (II)

BrainPET Data Formats (III)

Sinogram Data: geometrical sorting of LOR data into projections

Inputs for Quantification

Measured Coincidence Data (Prompts)

Estimated Random Data

Randoms Correction ??

Unavoidable Random Coincidences

Probability of Catching Randoms

Expected Rate of Randoms

$$R_{AB} = 2 \tau S_A S_B$$

- R : Random Rate for Detector Pair (A,B)
- S_A, S_B : Single Count Rates of detectors
- τ : Coincidence Timing Window (12 ns)

Direct Measurement: "Delayed Window"

Acquire Pseudo Coincidences due to Timing Offset T_{off} true coincidences: $|t_a - t_b|_{t} <$ random coincidences: $|t_a - t_b + T_{off}| <$

Detected Random Coincidences also inserted into List Mode Stream during Acquisition

Estimation of Randoms

Example: Patient Measurement

Attenuation

Attenuation ??

Attenuation Correction (direct measurement)

- ACF \rightarrow attenuation correction factor
- A \rightarrow activity distribution
- $\mu \rightarrow$ attenuation values

Attenuation Correction (from MR measurement)

Challenge:

MR information provides no direct estimate of photon attenuation (e.g. bone + cavities -> no Signal in Standard-MR-Seq.)

Attenuation Correction

Template based Approach

Rota Kops E et al, IEEE 2009 Proceedings: pp. 2530

Deadtime Correction

Deadtime Correction

Calibration Measurement

Calibration Measurements

calibration factor

activity concentration within phantom

cylinder phantom (filled with ¹⁸F)

region of interest

thanks to Christoph Weirich

Overview of Inputs for Quantification

Quantitative PET Imaging with Hybrid MR-PET Scanners

BrainPET in 3T-Tim-Trio MR

BrainPET insert

scanner with 32 heads

single detector head

- copper shielded against MR influence
- 6 PET detector blocks / head
- 12 x 12 crystals / block
- 2.5 x 2.5 x 20 mm³ LSO crystal
- 3 x 3 APD / block

Design and Structure of the BrainPET

Measurement Effect: Deadtime

deviation from global correction factor:

Cassette ID [0..31]

Measurement Effect: Pile-up

at low countrate:

at high countrate:

ratio (crystal level):

Dynamic Correction

global correction value:

block-based and Pile-up correction:

Cassette ID [0..31]

Institute of Neuroscience and Medicine (INM-4) | Slide 66

Dynamic Correction

crystal X

10

8 crystal X

before correction:

Weirich C., Scheins J., Gaens, M., Herzog H., Shah N.J. Combined Deadtime and Pileup Correction for the MR-compatible BrainPET scanner. Conference Record of the IEEE NSS/MIC Seoul, South Korea, 2013

Integration: Norm, Deadtime and Pile-up

Institute of Neuroscience and Medicine (INM-4) | Slide 68

Reconstruction: Quantitative Imaging

Weirich, C., Scheins, J., Lohmann, P., Tellmann, L., Herzog, H., Shah, N.J. *Quantitative PET Imaging with a 3T MR-PET Hybrid Scanner. (2012). Nuclear Instruments & Methods In Physics Research A.*

Scatter Correction

Watson...

Scatter Correction

I. Hong

Validation in Phantom Studies

Weirich, C., Daun, A., Scheins, J., Tellmann, L., Herzog, H., Shah, N.J. Long Term Quantitative Stability of the MR Compatible BrainPET Insert. Conference Record of the IEEE NSS/MIC, 2011

Validation in Phantom Studies

Scatter Correction

Hybrid MR-PET dynamic FDG-PET with MRI

Influence of MRI on PET Countrate

Weirich C., Brenner D., Tellmann L., Herzog H., Shah N.J. Systematic Investigation and Correction of MR Influences on Simultaneous PET Measurements. ISMRM, vol. 1, 2011

Brenner D., Weirich C., Scheins J., Besancon E., Tellmann, L., Herzog, H., Shah NJ., New Insights into PET Count Rate Reduction during Simultaneous MR-PET Measurements. ISMRM 2012

Analysis of PET Detector Signals

Correction of MR Influences

Uncorrected Countrate:

Corrected Countrate:

Correction Factor

Weirich, C., Brenner, D., Scheins, J., Tellmann, L., Herzog, H., Shah, N.J. *Analysis and Correction of Count Rate Reduction during Simultaneous MR-PET Measurements with the BrainPET Scanner*, IEEE Transactions on Medical Imaging, (2012)

Cross Calibration of PET Scanners

Parametric Image

Quantitative Energy Consumption of the Human Brain

Patlak...

Parametric Image Quantitative Energy Consumption of the Human Brain

Impact of the Quantification Workflow

in vivo PET-Scans with different tracers: Flumazenil FDG FET **FP-CIT** epilepsy glucose tumour **Parkinson's** uptake disease

Total number of *in vivo* scans:

Studies....

Conclusions

- ✓ Quantitative PET imaging from counts to parametric images
- \checkmark Corrections were designed, implemented and optimised
- ✓ Integrated reconstruction workflow has been implemented
- ✓ Quantification error has been determined in phantom studies
- ✓ Human studies are carried out applying the 3T MR-BrainPET
- \checkmark Long term stability of the system has been shown