- Thoughts by a Physicist -

Outline

- Efficient Characterization of the Dynamics of Systems
- L-C Resonator
- R-C Low-Pass / C-R High Pass Filters
- Example: Fast Timing Signal from a Slow Rising Signal
- Digitized Front-End
- Summary

- \rightarrow ...hiskp.uni-bonn.de \rightarrow lectures \rightarrow archive
 - Electronics for Physicists (in SS)
 - Advanced Electronics and Signal Processing (in WS)

D.Eversheim Autumn Lectures-2, Tiblisi 2015

- Efficient Characterization of the Dynamics of Systems -

- The water tank is filled from a reservoir of unlimited capacity;
- The water level approaches **exponetially** h_0 .

The voltage across the capacitor C approaches exponetially U_0

- Efficient Characterization of the Dynamics of Systems -

	Oscillator	Torsion Pendulum	String	Oscillatory Circuit	Echo Chamber	Pendulum
	m □ ↓			C = L	<i>l</i> →→	$m = mg \sin \theta$ mg
Excitation	Pull down mass and release it	Turn disk and let loose	Pluck spring	Close switch, after that open. Charge oscillates through the coil and between the disks of the capacitor	Make a banger explode in a chamber	Move mass and let loose
Eigen frequency	$\frac{1}{2\pi}\sqrt{\frac{k}{m}}$	$\frac{1}{2\pi}\sqrt{\frac{\tau}{I}}$	$\frac{1}{2l}\sqrt{\frac{Z}{\mu}}$	$\frac{1}{2\pi}\sqrt{\frac{1/C}{L}}$	$\frac{1}{4l}\sqrt{\frac{E}{\rho}}$	$\frac{1}{2\pi}\sqrt{\frac{mg/l}{m}} = \frac{1}{2\pi}\sqrt{\frac{g}{l}}$
Rigidity	Spring constant k	Torsion constant τ of the wire	Pulling force Z in the string	Reciprocal of the capacity 1/C	Adiabatic volume elasticity E of the gas inside the chamber	Restoring force per displacement, mg/l
Inertia	Mass	Moment of inertia I of the disk	Lengths density μ of the string	Inductivity of the coil	Density ρ of the gas in the chamber	Mass

- Efficient Characterization of the Dynamics of Systems -

si 2015

- Efficient Characterization of the Dynamics of Systems -

The Laplace Transform

- Is a "generalized" Fourier Transform $f(t) \rightarrow F(s)$; $s = i\omega + \varrho$
- "Algebraizes" linear differential equations (that represent the dynamics of systems with concentrated energy "reservoirs" like L, C, ...)
- A convolution in the time domain corresponds to a multiplication of the Laplace transform

- Efficient Characterization of the Dynamics of Systems -

$\mathbf{F(s)} = \int_{0}^{\infty} e^{-st} F(t) dt$	f(t)	Remark
$a F_1(s) + b F_2(s)$	a $f_1(t)$ + b $f_2(t)$	Linearity
s F(s) – f(0)	f ´(t)	Derivative
$s^{n} F(s) - s^{(n-1)} f(0) - s^{(n-2)} f^{(0)} \dots - f^{(n-1)}(0)$	f ⁽ⁿ⁾ (t)	n th derivative
$\frac{1}{s-a}$	e ^{at}	
$\frac{F(s)}{s}$	$\int_{0}^{t} f(\tau) d\tau$	Integral
$\frac{F(s)}{s^n}$	$\int_{0}^{t} \dots \int_{0}^{t} f(\tau) d\tau^{n} = \int_{0}^{t} \frac{(t-\tau)^{n-1}}{(n-1)!} f(\tau) d\tau$	n-fold integral
$A(s) \cdot F(s)$	$\int_{0}^{t} A(t) \cdot f(t-\tau) d\tau$	Convolution in the time domain

- Efficient Characterization of the Dynamics of Systems -

- Efficient Characterization of the Dynamics of Systems -

• For physically feasible systems applies: $n \le m$

$$T(s) = \frac{U_{out}(s)}{U_{in}(s)} = \frac{\sum_{\ell=0}^{n} b_{\ell} \cdot s^{\ell}}{\sum_{k=0}^{m} a_{k} \cdot s^{k}} = k \frac{\prod_{\ell=1}^{n} |s - s_{N_{\ell}}|}{\prod_{k=1}^{m} |s - s_{P_{k}}|} \cdot e^{i\left(\sum_{\ell=1}^{n} \psi_{\ell} - \sum_{k=1}^{m} \varphi_{k}\right)}$$

Pole/Zero Applet

– L-C Resonator –

P/N-Scheme of a system with frequency sensitive behaviour:

$$T(s) = \frac{1}{1 + Q \cdot (\frac{s}{\omega_0} + \frac{\omega_0}{s})} \xrightarrow{\text{Small bandwidth approximation}}{\omega = \omega_0 + \delta\omega, \rho = 0} \rightarrow \frac{1}{1 + i \frac{\omega - \omega_0}{\Delta\omega}} = \frac{\Delta\omega}{\Delta\omega + i(\omega - \omega_0)}$$

– L-C Resonator –

$\omega_0 = \sqrt{\frac{l}{LC}}$	$X_0 = \sqrt{\frac{L}{C}}$
$Q = \frac{X_0}{R}$	

Examples	Q
L-C oscillator circuit	100
Soil for earthquake waves	250-1400
Tuning fork	4,5 10 ⁴
Plucked violin string	10 ³
Cavity resonator	10 ⁴
Quartz crystal	10 ⁶
Excited atom	10 ⁷

D.Eversheim

– L-C Resonator –

• e^{i \varphi}

D.Eversheim Autumn Lectures-2, Tiblisi 2015

– L-C Resonator –

D.Eversheim Autumn Lectures-2, Tiblisi 2015

– L-C Resonator –

Nuclear Magnetic Resonance → Magnetic Resonance Tomography

90° "Puls" for magnetization $\vec{\mathbf{M}}$

Lamor frequency for protons: 42.577 478 92(29) MHz / Tesla = $\gamma_p/2\pi$ γ_p , the gyromagnetic ratio of a proton, is a fundamental constant.

D.Eversheim Autumn Lectures-2, Tiblisi 2015

– R-C Low-Pass / C-R High Pass Filters –

14

universität**bonn**

- Fast Timing Signal from a Slow Rising Signal -

D.Eversheim Autumn Lectures-2, Tiblisi 2015

- Fast Timing Signal from a Slow Rising Signal -

Define Figure of Merit (FM)

- The noise should be reduced substantially :
- The slope should be as steep as possible to become insensitive to noise :

16

D.Eversheim Autumn Lectures-2, Tiblisi 2015

Trigger at maximum steepness within 300ns

- Fast Timing Signal from a Slow Rising Signal -

Code Examples

29			110		
30	% Generate plots for the filters		111	% BodePlot of the bandwidth	
31 -	for $i = 2:4$		112		
32 -	clear stU in U out dU out ddU out LTI fy	in y out x LT	113 -	[nums, dens] = numden(LTI6);	% determine vector representation of LTI6
33 -	syms s t U_in U_out dU_out ddU_out LTI f y_	in y_out x LT	114 -	num = sym2poly(nums);	
34 -	<pre>str = streat('Data for: ', txt(i-1))</pre>		115 -	den = sym2poly(dens);	
35 -	<pre>fprintf('\n')</pre>	% line feed / carriage return	116 -	LT = tf(num, den);	% determine zthe transferfunction of the filters
36 -	$U_{in} = A^{t*exp(-t/Tau)};$		117 -	figure;	
37 -	$LTI = s*CR/(1+s*CR)^{i};$	% Linear time invariant filter	118 -	opts = bodeoptions('cstprefs');	
38 -	LTI6=10^-6*s*CR/(1+s*CR/10^6)^i;	% save LTI for Bode Plots	119 -	opts.FreqUnits = 'MHz';	
39			120 -	opts.Grid = 'on';	
40	% Calculations of output signal and its derivation	ative	121 -	opts.XlimMode = 'auto';	
41 -	$f = LTI*laplace(U_in);$		122 -	opts.YlimMode = 'manual';	
42 -	U_out =ilaplace(f);		123 -	opts.YLim = {[-80, 20]; [-270, 90]};	
43 -	$dU_out = diff(ilaplace(f), t);$		124 -	opts.PhaseUnits = 'deg';	
44			125 -	opts.Title.FontSize = 12:	
45	% Calculate in- and outputsignal for plots		126 -	Txt = streat ('Bode Plot of ', txt(i-1));	
46 -	x = logspace(-2, 2, 100);		127 -	onts. Title. String = Txt:	
4/-	xout = x;		128 -	$h = bodeplot(LT_opts)$	
48 -	$y_{in} = 0_{in};$	0/ mbatituta thu u fan u in		" cooproduct, opus),	
49 -	$y_{in} = subs (y_{in}, t, x);$	% substitute t by X for y_m			

- Fast Timing Signal from a Slow Rising Signal -

18

- Fast Timing Signal from a Slow Rising Signal -

Results									
CR = 50ns		Uout		dUout/dt				1	
		Ampl.	tmax [ns]	Ampl.	tmax [ns]	Fmin	Fmax	Bandwidth	FM
	CR – CR	0.013	0.327	0.099	0.050	1.320	7.693	6.373	0,016
	CR -CR ²	0.013	0.412	0.072	0.099	0.998	4.504	3.506	0,021
	CR - CR ³	0.013	0.488	0.060	0.149	0.836	3.445	2.609	0,023

The trigger time should be set @ ~150ns for a $C-R - (C-R)^3$ filter to be most insensitive to noise.

- Digitized Front-End -

Tasks of Digitized Front-End:

- Shapes signals (reduce noise)
- Amplifies signal
- First level trigger (Discriminator)
- Provides timing signal
- Provides time stamp
- Suppresses Zeros

Necessary for Digitized Front-End:

- Fast Analogue \rightarrow Digital Converter
- Real Time (Kernel) operating system
- Special (Harvard) processor architecture, that allows summing & multiplication within 1 clock cycle with:
 - Digital Signal Processor Slices
 - Gigabit Tranceivers
 - Dual ported memory
 - Ring buffers
- Calculations utilize special Laplace Transform:
 z-Transform:

For a stable system \rightarrow Poles inside unit circle

- Digitized Front-End -

Resonators

High- Lowpass

Notch Filter

D.Eversheim Autumn Lectures-2, Tiblisi 2015

- Digitized Front-End -

Hardware Realization

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

ASIC vs. FPGA

	ASIC	FPGA
Cost per chip	low	various
NRE cost (one time production cost)	(very) high	none
Power efficiency	+++	-
Area efficiency	+++	
Performance vs. power, area	+++	
Flexibility		+++
Development/programming complexity	very high	various

ASICS used when

- Highest performance
- High volume production
- Power & area constraints
- Special requirements
 - Analog + digital functions
 - Radiation tolerance

Introduction to FPGAs, H. Krüger, Bonn University, 2015

• ...

FPGAs used when

- Max. flexibility
- Low medium volume production
- Power & area not critical
- Digital only

D.Eversheim Autumn Lectures-2, Tiblisi 2015

- Digitized Front-End -

Test system for ATLAS FE-I4 pixel chip

- Digitized Front-End -

- ATLAS Pixel detector read-out
 - − Pixel Module \rightarrow back of crate card (BOC) \rightarrow read out driver (ROD)

Introduction to FPGAs, H. Krüger, Bonn University, 2015

24

- Summary-

- The dynamics of systems with concentrated energy reservoirs is represented by Linear Differencial Equations (LDE).
- The Laplace Transform is a standard means to solve LDEs & convolutions.
- Poles & Zeros in the complex s-plane represent concisely the dynamics of a system.
- MRI is based on the precise knowledge of the gyromagnetic ratio γ of particles.
- The z-Transform accomplishes in the digitized world what the Laplace Transform does in the analogue world.
- Digitized signal processing is governed by the hardware performance of fast ADCs, ASICs, FPGAs & DSPs.

