

1st QUALI-Start-up Science Lectures at Forschungszentrum Jülich, September 9-17, 2017

Fate of the Antimatter: Why Do We Exist?

Hans Ströher | Forschungszentrum Jülich

Answer (I)

Answer (II)

The Big Bang ...

Matter meets antimatter

The fight begins.

Introduction:

The Puzzle of the Matter-Universe

Timeline

Today

"Big Bang" (about 14 billion years ago)

0

Pair-wise

production

521 particles and an equal amount of anti-particles produced from energy

leading to matter

and anti-matter

Pair-wise annihilation

P into light

Why isn't there nothing?

Researchers hope to solve one of the greatest mysteries

http://www.fz-juelich.de/SharedDocs/Meldungen/PORTAL/DE/2015/15-04-02effzett.html

Background:

Anti-Particle/-Matter

Inventor of Antimatter

Inventor of Antimatter

PAUL A. M. DIRAC

Theory of electrons and positrons

Nobel Lecture, December 12, 1933

66

..., we must regard it rather as an accident that the Earth (and presumably the whole solar system), contains a preponderance of negative electrons and positive protons.

Matter

PAUL A. M. DIRAC

Theory of electrons and positrons

Nobel Lecture, December 12, 1933

It is quite possible that for some of the stars it is the other way about, these stars being built up mainly of positrons and negative protons.

Anti-Matter

PAUL A. M. DIRAC

Theory of electrons and positrons

Nobel Lecture, December 12, 1933

If we accept the view of complete symmetry between positive and negative electric charge as far as concerns the fundamental laws of Nature, ...

Symmetries in Nature

Symmetries

Symmetrical Objects

Why symmetries are important

Discrete Symmetries

Why symmetries are important

Asymmetry in Nature

Side remark: the question to ask an alien

Atoms with e⁺ or e⁻

Matter-antimatter asymmetry

Problem: Standard Modell (SM) CP-violation much too small!

New Physics - beyond SM

The Fate of Antimatter

with Leptons; Quarks

Leptonic Sector:

"Lepto-genesis"

Neutrinos

 Most abundant particle in Universe: about 110 per cm³
 Produced in nuclear decay- and fusions-reactions:
 e.g.: nuclear reactors, sun, ...
 Very difficult to detect

Leptonic Sector

Comparison of **neutrino-** und **anti-neutrino** – oscillations

Leptonic Sector

$$\pi^{-} \rightarrow \mu^{-} + \overline{v_{\mu}}$$
after about 2 µs
$$\mu^{-} \rightarrow e^{-} + \overline{v_{e}} + v_{\mu}$$

(... similar for π^+ ...)

Difference between **neutrino-** und **anti-neutrino** – oscillations

Set-up of Experiments

Leptonic Sector

Neutrinos

from nuclear reactors distance ~53 km

Jiangmen Underground Neutrino Observatory (JUNO), China 20.000 t liquid scintillator 15.000 photomultiplier 700 m below ground construction 2015 – 2019

One Example

"Baryo-genesis"

Nucleons

Protons (p⁺) and Neutrons (n⁰)
 Not fundamental (3 Quarks)
 Building blocks of atomic nuclei
 Lifetime of p larger than 10³³ yr
 Lifetime of (free) n about 11 min.
 Anti-Nucleonen (p⁻, n⁰)

Electric Dipole Moment

EDM violates T (CP)

Precision Experiment!

To date: only upper limits

New: charged particles

Conventional storage ring (B-fie for polarized proton- and deuteron beams Ideal test- and developmentmachine for storage-ring EDN project

Challenges of utmost level – an international project –> CERN (PBC: Physics Beyond Colliders)

2050

stolage nn

Fate of the Antimatter: Why do We Exist?

Search for new CP-violation

Why isn't there nothing?

Researchers hope to solve one of the greatest mysteries

New: EDM of charged particles – precision; discovery potential

Thank you very much!

Hans Ströher | Forschungszentrum Jülich