

INTRODUCTION TO ¹⁸F LABELING CHEMISTRY

10.09.2019 | BERND NEUMAIER | JÜLICH | 2019

¹⁸F-CHEMISTRY

PET Isotope	Half-life [min]	E _{β+} max [MeV]	Range max/average [mm]	Nuclear reaction	Decay product
¹⁸ F	109,8	0,64	2,4/0,6	¹⁸ O(p,n) ¹⁸ F	¹⁸ O

Difficulties associated with ¹⁸*F-chemistry:*

- time limitations
- water sensitivity
- diminished nucleophilicity of ¹⁸F
- use of aprotic solvents
- basic conditions

CONVENTIONAL PRE-PROCESSING OF [¹⁸F]FLUORIDE

INNOVATIVE RADIO-FLUORINATION METHODS

Alcohol-enhanced Cumediated radiofluorination

"Minimalist" approach

Ni-mediated radiofluorination

Limitations of the "minimalist" approach

"Minimalist" Cu-mediated radiofluorination

"MINIMALIST" RADIOFLUORINATION PROTOCOL

 $X^+ Y^-$

R. Richarz et al., Org. Biomol. Chem. 2014

SIMPLE and FAST

"MINIMALIST" SYNTHESIS OF [¹⁸F]FLUORO-BENZALDEHYDES

Conventional method

"Minimalist" approach

"MINIMALIST" AROMATIC ¹⁸F-FLUORINATION

Y[−]X⁺ 18_E

S_N2-RADIOFLUORINATION UNDER "MINIMALIST" CONDITIONS

Aliphatic $\rm S_N2$ radiosynthesis of $\rm [^{18}F]FDR$

S_N2-RADIOFLUORINATION UNDER "MINIMALIST" CONDITIONS

L. Feni, M. Omrane, M. Fischer, B. Zlatopolskiy, B. Neumaier, I. Neundorf, Pharmaceuticals 2017, 10, 99.

Claudin-4 binding peptides

- Overexpression of claudin-4 in various tumors, such as pancreatic carcinomas
- Claudin-4 promising target for the visualization of pancreatic tumors

Pd-CATALYSED S-ARYLATION

• In contrast to [¹⁸F]Fluoroiodobenzene:

-high yields, no by-products, easy purification via SPE

PSMA-SPECIFIC TRACER USING Pd-CATALYZED S-ARYLATION

¹⁸F

DESIGN OF NEW PSMA SELECTIVE PROBES

Pd-CATALYSED CROSS-COUPLING REACTIONS

"Minimalist" approach

Alcohol-enhanced Cumediated radiofluorination

Ni-mediated radiofluorination

JÜLICH

Forschungszentrum

2-[¹⁸F]Fluorophenylalanine: Synthesis by Nucleophilic ¹⁸F-Fluorination

"Minimalist" Cu-mediated radiofluorination

Ni-MEDIATED OXIDATIVE ¹⁸F-FLUORINATION

RADIOSYNTHESIS OF 6-[¹⁸F]FDOPA

Forschungszentrum

n.c.a. vs c.a. 6-[¹⁸F]FDOPA

A rat model of Parkinsons disease

c.a. 6-[¹⁸F]FDOPA: IAC from intact striatum, %ID/g 0.30 0.25 0.20 **ChemistryOPEN** 4/2015 0.15 Including Thesis Treasury Open Access 0.10 conventional Ni-mediated 0.05 SA: 30 MBq/µmol 0.00 0 10 20 30 40 50 60 Accumulation time, min n.c.a. 6-[¹⁸F]FDOPA: Full Pag Practical One-Pot Synthesis of PET Tracers (B. Neumaie Con: 0.04 0.18 Č. Wiley Open Access WILEY-VCH R %ID/g Ni: 0.07 0.21 5 mm 155N 2191-1363 - Vol. 4 - No. 4 - August 2015 SA: 175 GBq/µmol

B.D. Zlatopolskiy et al., ChemistryOpen 2015

"Minimalist" approach

Alcohol-enhanced Cumediated radiofluorination

Ni-mediated radiofluorination

JÜLICH

Forschungszentrum

2-[¹⁸F]Fluorophenylalanine: Synthesis by Nucleophilic ¹⁸F-Fluorination

"Minimalist" Cu-mediated radiofluorination

Cu-MEDIATED ¹⁸F-FLUORINATION OF (MESITYL)(ARYL)IODONIUM SALTS

Ichiishi et al. Org. Lett., 2014, 16, 3224-3227

COMPARISON BETWEEN DIFFERENT PROTOCOLS

B. D. Zlatopolskiy et al., Chem. Eur. J. 2015, 21, 5972-5979

"MINIMALIST" APPROACH TO Cu-MEDIATED RADIOFLUORINATION

Production of PET-Tracers

B. D. Zlatopolskiy et al., Chem. Eur. J. 2015;

J. Zischler et al., Appl. Radiat. Isot. 2016; D. J. Modemann et al., Synthesis 2019

Mitglied der Helmholtz-Gemeinschaft

18

[¹⁸F]DAA1106-PET

Stroke model in rats

B. D. Zlatopolskiy et al., Chem. Eur. J. 2015

"Minimalist" approach

Alcohol-enhanced Cumediated radiofluorination

Ni-mediated radiofluorination

JÜLICH

Forschungszentrum

2-[¹⁸F]Fluorophenylalanine: Synthesis by Nucleophilic ¹⁸F-Fluorination

"Minimalist" Cu-mediated radiofluorination

Cu-MEDIATED AROMATIC ¹⁸F-FLUORINATION OF BORONATES AND STANNANES

Cu-MEDIATED AROMATIC ¹⁸F-FLUORINATION OF BORONATES AND STANNANES

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum

ALCOHOL-ENHANCED Cu-MEDIATED RADIOFLUORINATION

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum

ALCOHOL-ENHANCED CU-MEDIATED RADIOFLUORINATION

ALCOHOL-ENHANCED Cu-MEDIATED RADIOFLUORINATION

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum

PRECLINICAL EVALUATION OF [¹⁸F]FLUOROTRYPTOPHAN

B. D. Zlatopolskiy et al., J. Med. Chem. 2017, 61, 189-206

Cu-MEDIATED RADIOFLUORINATION OF STANNANES

High yields • Commercially available precursors • Easy to automate

Cu-MEDIATED RADIOFLUORINATION OF STANNANES

JÜLICH Forschungszentrum

"Minimalist" approach

Alcohol-enhanced Cumediated radiofluorination

Ni-mediated radiofluorination

JÜLICH

Forschungszentrum

2-[¹⁸F]Fluorophenylalanine: Synthesis by Nucleophilic ¹⁸F-Fluorination

"Minimalist" Cu-mediated radiofluorination

LIMITATIONS OF THE MINIMALIST APPROACH

Radiosynthesis of 2-[¹⁸F]fluorophenylalanine

However only 63% enantiomeric purity

RACEMIZAION OF IODONIUM SALT PRECURSOR

- Less electron-withdrawing (or better electron-donating) N-protecting groups
- Anion exchange resin in non-basic form (no formation of CO_3^{2-} and/or HCO_3^{-} salts)
- 'Low base' protocol no contact of the precursor with the anion exchange resin

LIMITATIONS OF THE MINIMALIST APPROACH

Entry	Precursor	Radiolabeling method	Product	RCY [%]	ee [%][L/D]
1	$R = Boc,$ $X = BF_4$	minimalist	2-[¹⁸ F]FPhe	32 ± 14	63 ± 7
2	R = Boc, X = BF ₄	minimalist	4-[¹⁸ F]FPhe	35 ± 6	>99 (>99:1)
3	12 R = MOM, X = BF ₄	minimalist	2-[¹⁸ F]FPhe	25, 14	77, 80
4	$X = BF_4$	minimalist	2-[¹⁸ F]FPhe	27,28	>99 (>99:1)
5	$X = BF_4$	minimalist	2-[¹⁸ F]FPhe	42	92
6	$X = BF_4$	minimalist	2-[¹⁸ F]FPhe	35	98
7	$X = BF_4$	low-base	2-[¹⁸ F]FPhe	48 ± 8 (n = 3)	>99 (>99:1)

D. J. Modemann et al., Synthesis 2019, 51, 664-676.

PRECLINICAL EVALUATION OF 2- and 4-[¹⁸F]FPhe

38

RADIOACTIVE IMAGING AGENTS- WHY?

Molecular Imaging: "In-vivo-characterization of biological processes at the molecular level"

AIM:

Non-invasive elucidation of disease specific biochemical-, molecular-, physiological- and pathological processes

PRINCIPLE OF MOLECULAR IMAGING

BIOLOGICAL TARGETS FOR DISEASE DETECTION

Visualization of molecular processes - measurement of molecular alterations UP- or DOWN regulation of

Prostate specific membrane antigen

PSMA SELECTIVE PROBES

N-acetyl-aspartylglutamate (NAAG)

N-acetylaspartate glutamate

TRACER DESIGN - PSMA-PET LIGAND

N-Acetylaspartylglutamic acid (NAAG)

Tracer design and development

- Endogenous ligand of PSMA
- *in-vivo*: Cleavage to *N*-acetylaspartate and glutamate => short plasma half life
- Not suitable as PET probe

- Development of PSMA inhibitor
- High affinity for PSMA
- High metabolic stability
- Suitable for radiolabeling by prosthetic groups

RADIOSYNTHESIS OF [18F]PSMA

IMAGING OF PCa RECURRENCE BY [¹⁸F]PSMA-PET

Prostate cancer

PROSTATE CARCINOMA (PCa)

[¹⁸F]PSMA SUPERIOR TO [⁶⁸GA]PSMA-HBED-CC PET/CT

Courtesy of C. Kobe, M. Dietlein, Nuklearmedizin UKK

IMAGING OF PCa BONE METASTASIS BY [¹⁸F]PSMA-6-PET

Detection of even very small lesions

[¹⁸F]PSMA-6-PET

Mitglied der Helmholtz-Gemeinschaft

Courtesy of C. Kobe, M. Dietlein, Nuklearmedizin UKK

REENDOTHELIALIZATION BY [18F]PSMA

Reendothelialization

THE ROLE OF PSMA IN REENDOTHELIALISATION

BALLOON DILATATION MODEL

IMAGING OF REENDOTHELIALIZATION BY PSMA PET

ANALYSIS OF PSMA EXPRESSION

VOIs (red squares) used for analysis

VOI ratios (ipsi-/contralateral) over time after dilatation

immunostaining of the dilated CCA

immunostaining of the contralateral CCA

NEUROPATHIC PAIN BY [18F]PSMA PET

Neuropathic pain

VISUALIZATION OF NEUROPATHIC PAIN BY [¹⁸F]PSMA PET

Neuropathic pain induced by sciatic nerve lesion (SNI).

[¹⁸F]PSMA PET OF A PATIENT WITH CHRONIC PAIN

Courtesy of C. Kobe, M. Dietlein, S. Stockter Nuklearmedizin UKK

GLIOMA BY [¹⁸F]PSMA PET

[¹⁸F]PSMA PET OF PATIENTS WITH HIGH-GRADE GLIOMAS

Neurodegenerative diseases

AMYLOID IMAGING BY [¹¹C]PIB-PET

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum

ALZHEIMER'S DISEASE: TAU-HYPOTHESIS

- Changes in tau protein lead to the disintegration of microtubules in brain cells
- This may result in malfunctions and eventually the death of the neurons
- Over time damage may lead to pathogenesis of AD

REQUIREMENTS OF TAU-TRACER

TAU IMAGING BY [¹⁸F]AV1451 (T807) PET

Healthy control person

Mitglied der Helmholtz-Gemeinschaft

© 2015 unpublished data, University of Cologne

AMYLOID PLAQUE AND TAU IMAGING OF NEURODEGENERATIVE DISEASES USING [¹¹C]PIB AND [¹⁸F]T807 PET

Dronse et al. J. Alzheimers Dis. 2017

Tryptophan metabolism

RADIOLABELED TRYPTOPHAN DERIVATIVES FOR IMAGING OF TRYPTOPHAN METABOLISM

Tryptophan characteristics:

- essential proteinogenic amino acid
- contains indole ring in the side chain
- cannot be synthesized by mammals and must be obtained from external sources
- least abundant amino acid in animal proteins
- precursor for various metabolic pathways
- products of tryptophan metabolism: serotonine, melatonin, niacin and kynurenins

[¹⁸F]FLUORTRYPTOPHAN AS PET TRACER

- Tumor detection / Staging
- Epilepsy
- Neurodegenerative diseases

¹⁸F-SUBSTITUTION POSITION DETERMINES CEREBRAL UPTAKE OF [¹⁸F]TRYPTOPHAN

¹⁸F-SUBSTITUTION POSITION DETERMINES CEREBRAL UPTAKE OF [¹⁸F]TRYPTOPHAN

AIM

"Imaging of biological targets on the molecular level"

Challenges

- identification of key processes and corresponding molecular targets
- tracer design
- development of radiolabeling strategies
- amenability to automation

THANK YOU!

Thank You

10.09.2019 | BERND NEUMAIER | JÜLICH | 2019

