

QUANTUM COMPUTING - BASICS

11.09.2019 | LOTTE GECK

Member of the Helmholtz Association

CRYOGENIC INTEGRATED CIRCUITS

Recap

Goal

• Design, implement and test <u>scalable</u> control and readout electronics for quantum computers

Challenges

- Scalability: operate thousands and millions of qubits in parallel
- Cryogenic environment with very limited cooling power (few mW in total at < 100mK)
- Area restrictions for 1:1 coupling of electronics with qubits
- · Interface to room temperature electronics

Only possible with highly integrated cryogenic electronics

oxford-instruments.com

00 Month 2018

Page 3

Mathematicians

Computer Scientists **Electroistis**Engineers

QC VS CLASSICAL C

Algorithms

Classical Computer

Quantum Computer

Forschungszentrum

• Can run classical algorithms

• Can run classical and quantum algorithms

	Quantum Algorithm Zoo	
	This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please email me at stephen.jordan@microsoft.com. Your help is appreciated and will be <u>acknowledged</u> .	
Most efficient algorith	Algebraic and Number Theoretic Algorithms	nor's algorithm
Run time: sub-expone	Algorithm: Factoring Speedup: Superpolynomial Description: Given an <i>n</i> -bit integer, find the prime factorization. The quantum algorithm of Peter Shor	
→Factoring a 2048 bit a super computer	t number takes 100 years on algorithms	er takes 26.7 hours
		[']

13 September 2019

Programming Languages, Compiler, Software, Microarchitecture

- Languages:
 - QCL, Quantum pseudocode, Q#, Qlanguage, OpenQL,...
- Instruction sets:
 - Quil, OpenQASM, QUISA,...
- Software development kits:
 - ProjectQ, Quiskit, Forest, Quantum Developmet Kit, Cirq,...

13 September 2019

QC VS CLASSICAL C

Circuits, Gates, Memory

Classical Computer

Irreversible and deterministic

Quantum Computer

Reversible and non-deterministic

Member of the Helmholtz Association

13 September 2019

Circuit Execution

Gates

Classical Computer

• Universal gate: NAND

- Logical operation
- Truth tables

• Mostly one directional

Quantum Computer

• Universal gate set: {H,T,S,CNOT}

- Unitary operation
- Unitary matrix

$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ e^{i\pi/4} \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\i \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Reversible

[1]

13 September 2019

The qubit

Changing states and doing gates

- Single qubit gate = rotations in Bloch sphere
- → Multiplication with unitary matrix
- →Rotation matrix e.g.:

 $R_{\chi}(\pi) = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}$

 $|\Psi\rangle = U \cdot |\Psi_0\rangle$

- Multiple qubit gate:
- → Multiplication with unitary matrix

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

→ Example:

$$|\Psi_{1,2}\rangle = \text{CNOT} \cdot |\Psi_{0(1,2)}\rangle$$

→ But:

SCREE JÜLICH Forschungszentrum

 $|\Psi_{1,2}$ $\mathbb{P} \neq |\Psi_1 \mathbb{R} | \Psi_2 \mathbb{P}$ Entanglement

Member of the Helmholtz Association

13 September 2019

Exercise 1

How to get from * to o?

$$R_{x}(\theta) \equiv e^{-i\frac{\theta}{2}X} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}X = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$
$$R_{y}(\theta) \equiv e^{-i\frac{\theta}{2}Y} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Y = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$
$$R_{z}(\theta) \equiv e^{-i\frac{\theta}{2}Z} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}Z = \begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$$

Member of the Helmholtz Association

13 September 2019

Exercise 2

What quantum circuit is this and what is the output?

Member of the Helmholtz Association

13 September 2019

Quality of gates

How do we determine the gate quality? → Calculate the fidelity (0,1):

1

 $F = \frac{1}{n^2} \left| \mathrm{Tr}[U^{\mathrm{T}}_{\mathrm{ideal}} \cdot U] \right|^2$

→Benchmark set by error correction (infidelity): $1 - F = 10^{-2} - 10^{-3}$

(current research^best between $10^{-1} - 10^{-2}$)

Member of the Helmholtz Association

13 September 2019

BASIC QUANTUM COMPUTING

Qubit implementations

Semiconductor Qubits

Trapped lons

Superconducting Qubits

Member of the Helmholtz Association

13 September 2019

BASIC QUANTUM COMPUTING

GaAs qubit

Build:

- 2D electron gas through hetero structure
- 2D confinement with topological electrodes
- Capture electrons in resulting double quantum dot

State:

- Use spin of electrons to encode state of qubit $|0\rangle = |T_0\rangle, |1\rangle = |S\rangle$
- State = energy state
- Manipulation through ϵ voltage signal

BASIC QUANTUM COMPUTING

Operating a GaAs qubit

Use rectangular sequences:

Member of the Helmholtz Association

Error Correction

- Short storage (coherence) time
 - µs s
- Unreliable operation
 - Gate error rate: MOSFET 10^{-16} vs Qubit $10^{-1} \sim 10^{-2}$
- Limitations for quantum error correction
 - No copying
 - Destructive detection
 - Continuous error

13 September 2019

[1] Similarly taught in EE4575 and AP3421 at Delft University of Technology

Member of the Helmholtz Association

13 September 2019

