

INTERACTION of RADIATION and PARTICLES with MATTER

Detlev Gotta

Institut für Kernphysik, Forschungszentrum Jülich / Universität zu Köln

"Autumn Lectures" – Nuclear and Medical Physics *Tbilisi, Georgian Technical University (GTU)* October 8-9, 2015

BASICS

INTERACTION of ELECTROMAGNETIC RADIATION

INTERACTION of MASSIVE PARTICLES

APPENDIX

STRUCTURE of MATTER

PARTICLES and ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC INTERACTION

CROSS SECTION

STRUCTURE of MATTER I

Dalton: Each substance is composed of chemical <u>elements</u>.

1 Mol Na + 1 Mol Cl -> 1 Mol NaCl

One Mol contains always the same number of particles $N_A = 6 \cdot 10^{23}$ The ratios of molar masses of the elements are almost ratios of integer numbers.

Atomic mass unit (a.m.u.)

1 a.m.u. =
$$\frac{\mathbf{m}(^{12}\mathbf{C}\mathbf{atom})}{12} = \frac{12 \mathbf{g}}{12 \cdot \mathbf{N}_{A}} = 1.66 \, 10^{-27} \mathbf{kg}$$

Periodic system of elements

Mendelejev: Ordering scheme according to chemical properties

Η																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											AL	Si	Ρ	S	CI	Ar
K	Ca	Sc	Ti	V.	Cr	Мn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y.	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-	Xe
Cs	Ba		Hf	Τa	W	Re	Os	lr.	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
			C.	D-	Ma	Dee	Cm	E	64	ТЬ	D	La	Б.	Tm	Vh.	1	1
		La	ce	Pr	NO	РM	эm	CU	Gū	10	υy	по	сr	1 m	TD	LU	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

STRUCTURE of MATTER II

Discovery of the electron (J.J. Thomson 1897)

Interpretation of the rays accompanying gas discharges: Kathode rays: Electrons (negatively charged and light) Channel rays: lons (positively charged and heavy)

Discovery of the atomic nucleus (Geiger & Rutherford 1911)

Almost the full mass of an atom of diameter ~ 10^{-10} m is concentrated in a tiny volume of radius ~ 10^{-15} m

Proof: Collision kinematics - backscattering only from heavy collsion partners

 $\Rightarrow total atom is electrical neutral: Atomic nucleus - electric charge + Z q_e Z whole number$ $Atomic shell - electric charge - Z q_e$

STRUCTURE OF MATTER III

Bohr-Sommerfeld model of atoms

main quantum number n = 1, 2, ...

"main shell"

angular momentum

ℓ = 0, ..., n-1

"sub-shell"

magnetic quantum number $m = -\ell$, $-\ell + 1, ..., \ell - 1, \ell$

 $(2\ell +1)$ possible orientations of angular momentum vector in external field

intrinsic electron spin $S = \frac{1}{2}$

intrinsic angular momentum

2 possible orientations of spin vector in external field $S = \pm \frac{1}{2}$

total spin:
$$\vec{j} = \vec{\ell} + \vec{S}$$
 $|\vec{j}| = \frac{1}{2}, 1, \frac{3}{2}, ...$

 ℓ and S are measured in units $\hbar = \frac{h}{2\pi}$ (h: Planck constant)

main shells for Z = 1 (H)

STRUCTURE of MATTER IV

$S = \frac{1}{2}$ particles are called *fermions*

Pauli principle:

Only one fermion is allowed in a particular quantum state: For atoms = (n, ℓ, m, S)

 \Rightarrow maximum no. of electrons per sub-shell: $2 \cdot (2\ell + 1)$

Periodic system of elements

Mendelejev: Ordering scheme according to chemical properties

H Li Be Na Ma	<u>:</u>]										B	C Si	N P	0 S	F Cl	He Ne Ar	outmost unfilled
K Ca	i Sc Y	Ti Zr	V Nh	Cr Mo	Mn Tc	Fe Bu	Co Bh	Ni Pd	Cu An	Zn Cd	Ga In	Ge Sn	As Sh	Se Te	Br	Kr Xe	shell
Cs Ba		Hf	Ta	W	Re	Os	lr L	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	<i>determines</i>
Fr	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu	1	chemistry
	Ac	Th	Pa	υ	Np	Pu	Am	Cm	Bk	Ćf	Es	Fm	Md	No	Lr	1	

PARTICLES

What characterizes a particle?

ELECTROMAGNETIC RADIATION

The Electromagnetic Spectrum

wave length λ frequencyv

wave p	ropagation	n veloci	ty in vacuum	$c = \lambda v$
"	"	"	in medium	$c' = \lambda' v < c$
index of	of refractio	on and a start s		n = c/c'

quantum mechanics: waves can be particles

Photon having spin 1

$$m = \pm 1$$
, no $m = 0$

having energy E = h v (Einstein 1905)

EL.-MAG. INTERACTION I - ELECTRIC FORCE

the force is mediated in the

classical picture

quantum world

by field around a source

field quanta = particles

"light" particles = photons γ

electromagnetic radiation = E and B fields interact with electric charges

EL.-MAG. INTERACTION II - CHARGES in EL.-MAG. FIELDS

• electric field

 $\vec{\mathbf{F}} = \mathbf{m}\vec{\ddot{\mathbf{x}}} = \mathbf{Q}\cdot\vec{\mathbf{E}}$

magnetic field

$$\vec{\mathbf{F}} = \mathbf{m}\vec{\ddot{\mathbf{x}}} = \mathbf{Q}\cdot\left(\vec{\mathbf{v}}\times\vec{\mathbf{B}}\right)$$

- B = const.
- \Rightarrow circular motion
 - $B \perp$ plane of projection

$$\omega = \frac{Q}{M}B \qquad \omega = \frac{2\pi}{T}$$

$$\Rightarrow$$
 p

$$mv^{2} / r = Q \cdot v \cdot B$$
$$p = Q \cdot B \cdot r$$

Hertz 1888

Emitter: The variable E and H fields are emitted with speed of light forming the <u>transverse el.-mag. wave</u>

Receiver: The variable E and H fields of the arriving <u>el.-mag. wave</u> induce currents because of forces on charges

EL.-MAG. INTERACTION IV - MAGNETIC MOMENT

"magneto-mechanical" view of magnetic moment

circular current $I = Q \cdot \frac{\omega}{2\pi}$ magnetic moment $\vec{\mu} \equiv I \cdot \vec{A} = \frac{Q}{2m} \cdot \vec{L}$ quantum mechanics $L = n\hbar$, n = 0, 1, 2, ...

magnetic dipole is produced by

subatomic particles: possible without any mechanical analogon (extension)

Bohr magneton	$\mu_B = \frac{e\hbar}{2m_e}$	$\mu_e = -g_e \cdot \mu_e$	$u_B \cdot \frac{s}{\hbar} \qquad g_e = 2 + 2 \cdot 10^{-6}$	<i>elementary particle</i>
nuclear magneton	$\mu_N=rac{e\hbar}{2m_p}$	$\mu_p = g_p \cdot \mu$	$a_B \cdot \frac{s}{\hbar}$ $g_p = 5.6$	not an elementary particle
torque $\vec{M} = \vec{\mu} \times \vec{B}$ change in units of $g \mu_B / g \mu_N$	F	F B B	interaction energy $\Delta E = \vec{\mu} \cdot \vec{B}$	

CROSS SECTION I

measures the probability of a reaction

CROSS SECTION II

"thick" target integration over target thickness d

 $N(d) = N(0) \cdot e^{-\rho \cdot \frac{N_A}{A} \cdot \sigma \cdot d} = number of \underline{not} interacting particles (transmission)$ $R(d) = N(0) \cdot (1 - e^{-\rho \cdot \frac{N_A}{A} \cdot \sigma \cdot d}) = number of interacting particles (reaction/absorption)$

linear extinction coefficient $\mu \equiv (\rho \cdot \frac{N_A}{A}) \cdot \sigma$ ρ : status of target Amass absorption coefficient $\lambda^{-1} \equiv \frac{\mu}{\varrho} = \frac{N_A}{A} \cdot \sigma$ independent of state of aggregation of target Amixture/compoundtotal cross section $\sigma_{total}(E) = \Sigma \sigma_{partial}(E)$ $[1 \text{ barn} = 10^{-24} \text{ cm}^2]$

CROSS SECTION III

differential cross section includes angular information of scattering

INTERACTION of ELECTROMAGNETIC RADIATION

SCATTERING

PHOTO EFFECT

COMPTON EFFECT

PAIR PRODUCTION

BREMSSTRAHLUNG & EL.-MAG. SHOWER

ATTENUATION

THOMSON SCATTERING

elastic scattering of el.-mag. waves at a free charges = electron, ...

independent of wave length λ

$$\boldsymbol{\sigma}_{Th_atom} = \boldsymbol{Z} \cdot \boldsymbol{\sigma}_{Th}$$

deviates from experiment

$$r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2}$$
$$= \alpha \cdot \frac{\hbar c}{m_e c^2}$$
$$= 2.82 \cdot 10^{-15} m$$

application: plasma diagnosis, polarization of CMB, ...

RAYLEIGH SCATTERING

elastic scattering of el.-mag. waves at polarisable scattering centers = atoms, molecules

damped oscillation of "elastically" bound electrons eigen frequency ω_0

no energy loss E_{γ} e e

application: combustion diagnosis, holidays, ...

$$\sigma_R = \sigma_{Th} \cdot \frac{\omega^4}{(\omega^2 - \omega_0^2)^2} \cdot \mathbf{Z}^2$$

 ω_0 eigen frequency

$\omega \ll \omega_0$ makes the sky blue / sunset red

PHOTO EFFECT

requires particle nature of "light" Einstein 1905

- 1. photon disappears photo electron $E_e = E_{photon} - E_B$
- 2. refilling of hole in electron shell by

 a) emission of photon or
 b) Auger electron emission of
 loosely bound outer electron
 E_{Auger} ≅ E_B

detected energyEphoto peak $E = E_{photon}$ $= E_e + E_B$ escape peak $E = E_{photon} - E_{K\alpha}$

RESPONSE of EYE CELLS

cis – trans transition

of various opsin (protein) configurations

COMPTON EFFECT

proof of particle nature of "light" Compton 1922

billard with photons and "quasifree" electrons

$$\sigma_{C} \approx \sigma_{Th} \cdot (1 - 2\varepsilon\gamma + \cdots) \cdot \mathbf{Z} \qquad \varepsilon_{\gamma} \ll 1$$
$$\approx \sigma_{Th} \cdot \frac{3}{4} \cdot \left(\frac{1 + 2\ln\varepsilon\gamma}{2\varepsilon\gamma} + \cdots\right) \cdot \mathbf{Z} \quad \varepsilon_{\gamma} \gg 1$$
complicated QED calculation Klein&Nishina 1929

 $\Delta \lambda = \lambda (1 - \cos \theta)$ photon does <u>not</u> disappear recoil electron $E_e = E_{photon} - E_{photon'}$ continuous spectrum ē PP PP Single No. of Double escape escape counts detected energy $E = E_{e}$ we neglegt E_B of the electron and *E*_{recoil} of the nucleus because usually E_{B} , $E_{recoil} << E_{e}$ **Compton edge** = maximum energy transfer Energy absorbed

PAIR PRODUCTION

proof of mass-energy equivalence Blackett 1948

$$\sigma_{pair} \approx \sigma_{Th} \cdot \mathbf{Z}^2 \cdot (ln 2\varepsilon \gamma + \cdots) \ \varepsilon_{\gamma} \gg 1$$

conversion of energy into matter

 $E_{photon} = hv > 2 m_{electron,muon,pion, ...}$ a recoil partner (e.g. a nucleus) is needed $to fulfil energy and momentum conservation
<math display="block">e^+e^- \text{ threshold: } m_{recoil} = \infty \quad hv = 2 m_e c^2$ $= m_e = 4 m_e c^2$

el.-mag. shower

e⁺ e⁻ γ - cascade pair production and bremsstrahlung alternate shower may start with photon <u>or</u> electron

radiation length X₀

characteristic material dependent constant depth, where about 2/3 of the incident energy is converted

CROSS SECTIONS SUMMARY

BREMSSTRAHLUNG

accelerated charged particles radiate Hertz 1886

electromagnetic waves

$$\sigma_b \approx \sigma_{Th} \cdot \mathbf{Z}^2 \cdot [energy \, dependent]$$

bending force by Coulomb potential

force \Leftrightarrow acceleration

$$F_{\text{Coulomb}} = \frac{1}{4\pi\epsilon_0} \cdot \frac{\text{Qparticle} \cdot \text{Qnucleus}}{r^2}$$
$$= \mathbf{m} \cdot \ddot{\mathbf{r}}$$

any distance r

⇒ continuous spectrum

EL.-MAG. SHOWER

alternating pair production & bremsstrahlung

initial particle of minor importance for large energies

characteristic quantity of absorber

radiation length X₀

$$E_{v} = E_{initial} \cdot e^{-(x/X_{0})}$$

x

ATTENUATION

INTERACTION of MASSIVE PARTICLES

CHARGED PARTICLES : ENERGY LOSS BY IONIZATION

HEAVY CHARGED PARTICLES

LIGHT CHARGED PARTICLES

CHARGED PARTICLES : ENERGY LOSS BY RADIATION

NEUTRONS

CHARGED PARTICLES - ENERGY LOSS by IONIZATION

collisions create electron- ion pairs

HEAVY CHARGED PARTICLES - STOPPING POWER I

heavy particles μ , π , K, p, d, ...

HEAVY CHARGED PARTICLES - STOPPING POWER II

Bethe-Bloch range

HEAVY CHARGED PARTICLES - STOPPING POWER III

Figure 30.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included. These become significant for muons in iron for $\beta \gamma \gtrsim 1000$, and at lower momenta for muons in higher-Z absorbers. See Fig. 30.23.

HEAVY CHARGED PARTICLES - STOPPING POWER IV

HEAVY CHARGED PARTICLES - BARKAS EFFECT

frictional cooling (e-cooler, muon collider), window design, ...

HEAVY CHARGED PARTICLES - STRAGGLING

energy straggling

Landau-Vavilov distribution

asymmetric <u>energy straggling</u> towards higher ΔE

thick layers \rightarrow many collisions \rightarrow skewness decreases

- Δ_p/x most probable energy loss (here normalized to unity)
- Δ/x energy loss per layer thickness

$$\overline{\Delta}^2 \propto \frac{\overline{Z}}{\overline{A}} \cdot \rho \cdot d \cdot \frac{1}{\beta^2}$$
 for "thin" layers

Absorber

$$\overline{\Theta} = \frac{13.6 MeV}{\beta cp} \sqrt{x / X_0} (1 + ...) \propto z \cdot Z / p^2$$

 $\begin{array}{ll} \textit{many collisions} \rightarrow \textit{Gaussian angular distribution} \\ \mathbf{X}_0 / \textit{gcm}^{-2} &= 63~(126) & \mathbf{H}_2 (\mathbf{D}_2) & \textit{radiation length} \\ &= 108 & \mathbf{Si} \\ &= 13.8 & \mathbf{Fe} \end{array}$

 x / gcm^{-2} effective thickness of layer ($x = d \cdot \rho$)acceptance of experimental setup (storage rings etc.)position resolution of tracking devices

HEAVY CHARGED PARTICLES - RANGE I

12**C**

Carbon lons in H₂O

protons

Protons in H₂O

20

Fig. 4. Proton and carbon ion tracks are compared microscopically to an illustration of a DNA molecule before, in and behind the Bragg maximum, for the same energy [41].

Biochimica et Biophysica Acta 1796 (2009) 216-229

HEAVY CHARGED PARTICLES - RANGE II

mean range depends on particle mass $R = \int dE / (dE/dx)$ [cm] T_{kin}

ΔR range – straggling $\Delta R/R \approx 1\% - 3\%$ for all elements longitudinal $\approx 2\% - 6\%$ transversal

Carbon

47 MeV antiprotons radiochromic film response

N. Bassler et al. Radiotherapy and Oncology 86 (2008) 14-19

20 keV protons on carbon (Monte-Carlo simulation SRIM)

A.Csete / PhD thesis, Aarhus, 2002

LIGHT CHARGED PARTICLES - STOPPING POWER

radiation dominated energy range

energy loss by bremsstrahlung $-\frac{dE_{kin}}{dx} \propto Z^2_{target} \cdot E_{kin} \cdot [...]$ $\Rightarrow E_{kin} = E_{0,kin} \cdot e^{-(x/X_0)}$ radiation length X_0 [g·cm⁻²] $\frac{1}{X_0} = 4\alpha \cdot r_e^2 \cdot \frac{N_A}{A} \cdot Z^2_{target} \cdot [...]$

after depth $d = X_0 / \rho$ ([cm]) all but 1/e of the energy of the particle is lost by bremsstrahlung

LIGHT CHARGED PARTICLES - RANGE

ionisation dominated energy range

electron range (semiempirical formulae)

	R	=	0,52 E ^(MeV) - 0,09	(g cm ⁻²)	0,5 <	E _e < 3 MeV
	R	=	0,412 E ⁿ	(g cm ⁻²)	0,01 <	E _€ < 3 MeV
	mi	t	n = 1,265 - 0,0954	low Ee		
	R	=	0,53 E ^(MeV) - 0,106	(g cm ⁻²)	1 4	Ee< 20 MeV
-	dE dæ	=	$\frac{2 \overline{u} e^4}{E_e} N^6 Z (ln)$	$\frac{E_{e}}{I}$ + 0,15)	E _e 44	m _e c ²
-	dE dæ	=	$\frac{2\pi e^4}{m_e c^2}$ N ^e Z (ln	$\frac{E_{e}^{3}}{2m_{e}c_{I}^{2}}^{2} + \frac{1}{8})$	E _e ≫	mec ²

radiation dominated energy range

radiation length X₀ [g·cm⁻²]

D_2	126	mylar 40
H_2^-	63	air 37
AĪ	24	water 36
Ar	20	rock standard 27
Cu	13	Csl 8.4
Pb	6	PbWO₄ 7.4

LIGHT CHARGED PARTICLES - RELATIVE ENERGY LOSS

Fractional energy loss per radiation length in lead as a function of electron or positron energy.

CHARGED PARTICLES - ENERGY LOSS BY RADIATION I

<u>Cerenkov</u> radiation if V_{particle} > C_{in medium}

Cerenkov 1930s

"light" blue!

electrons "radiate" in the water above the core of a nuclear power plant

the charge polarizes the medium

emission under specific angle Θ_{C}

 $\cos \Theta_{c} = 1 / \beta \cdot n$ $n = index \ of \ refraction$ (small) dispersion !

Θ_c measures the velocity of the particle

acoustics analogue: Mach's cone for supersonic source

12

CHARGED PARTICLES - ENERGY LOSS BY RADIATION II

<u>Transition</u> radiation for ultrarelativistic particles ($\gamma >> 1$)

Ginzburg & Frank 1946

Readjustment of the el.-mag. fields (E,H) at the boundary of 2 media

with different dielectric properties (ϵ)

leads as collective response of the material to emission of el.-mag. radiation (X-rays)

typical: soft X-rays of 2-40 keV for $\gamma \approx 1000$

application: plasma frequencies of materials, particle separation (π/p), ...

NEUTRONS I

collisions create recoil particles

maximum energy transfer for $M_{neutral} = M_{recoil}$

central collisionennon centralallaverge energy transfer50

energy is transferred completely all energies according to scattering angle 50%

detection by recoil protons (from hydrogen)

...

 $M_{Proton} \approx M_{Neutron}$

i.e. good shieldings are water

concrete (15% water) paraffin ((CH)_n) cloud chamber picture

neutron

NEUTRONS II

neutrons – no defined range

$$T_n \approx \frac{1}{40} eV$$

subsequent capture or decay

don't forget absorber for reaction and decay products (mostly γ)

UNITS

CONSTANTS

RELATIONS

RELATIVISTIC KINEMATICS

LITERATURE

UNITS

atoms

 $1 \text{ nm} = 10^{-9} \text{ m}$

length

	- Bohr radius - proton "radius"	$\approx 0.5 \ 10^{-10} \ m = 0.05 \ nm$		≈(
energy		eV		Μ
	- binding energy - visible light - X-rays	- 13.6 eV · Z² / n² 1 – 2 eV up to ≈ 100 keV		\approx $\gamma -$
moment	um	eV/c		Μ
time		1 fs = 10 ⁻¹⁵ s		1
	- life time	2p hole in K atom \approx 6 fs	;	Δ
mass		a.m.u. $\equiv m(^{12}C)/12$	2	Μ
	rest mass m _o	≈ A · a.m.u.	- a.m.u. - proton - neutron - electron	93 93 93 0.{
angular i	momentum (Spin)	j = 0,1/2,1,3/2,	ħ	[j]
magnetic	c moment	$\mu_{\rm B} = 5.8 \cdot 10^{-11} \text{ MeV}$	V∙T ⁻¹	μ_{N}
cross se	ction	σ		10
				1.

nuclei or particles

1 fm = 10⁻¹⁵ m (= 1 Fm)

 $\approx 0.8 \ 10^{-15} \ m = 0.8 \ fm$

MeV ≈ 8 MeV / nucleon. γ – rays up a few MeV

MeV/c

 $\begin{array}{l} 1 \ ys = 10^{-24} \ s \\ \Delta \ baryon \ 6 \cdot 10^{-24} \ s \\ \hline MeV/c^2 \\ 931.5 \ MeV/c^2 = 1.66 \cdot 10^{-27} \ kg \\ 938.3 \ MeV/c^2 \approx 1 \ a.m.u. \\ 939.6 \ MeV/c^2 \approx 1 \ a.m.u \\ 0.511 \ MeV/c^2 = 9 \cdot 10^{-31} \ kg \approx 1/1823 \ a.m.u \\ \hline [j] = [E \cdot t] \\ \mu_N = 3.2 \cdot 10^{-14} \ MeV \cdot T^{-1} \end{array}$

 $10^{-24} \text{ cm}^2 = 1 \text{ barn (b)}$ 1 a. u. $= r_B^2$

CONSTANTS

speed of light <i>definition!</i>	$c \equiv 299\ 792\ 458\ m/s$	≈ 0.3 m/ns
elementary charge (±)	$e = 1.6 \cdot 10^{-19} C$	
Avogadro constant	$N_A = 6.02 \cdot 10^{23} / mol$	
Planck constant	$h = 6.6 \cdot 10^{-34} \mathrm{J} \cdot \mathrm{s}$	
	$\hbar = h/2\pi$	analogue λ,
	$\hbar = 6.582 \cdot 10^{-22} \text{MeV} \cdot \text{s}$	
fine-structure constant	$\alpha = e^2/4\pi\epsilon_o\hbar c$	= 1/137
classical electron radius	$\mathbf{r}_{e} = e^{2}/4\pi\epsilon_{o}m_{e}c^{2} = \alpha \hbar c/m_{e}c^{2}$	= 2.82 fm
conversion constant	$\hbar c = 197 \text{ MeV} \cdot \text{fm} (\hbar = h/2\pi)$	
conversion constant	$hc = 12.4 \text{ keV} \cdot 10^{-10} \text{ m}$	

RELATIONS

wave propagation	$C = \lambda v$	
Photon energy	$E = h v = \hbar \omega$	
uncertainty relation life time $t \Leftrightarrow \Delta E = \Gamma$	$ \Delta \mathbf{p} \cdot \Delta \mathbf{x} \geq \hbar \Gamma \cdot \tau = \hbar/2 $	$\Delta E \cdot \Delta t \geq \hbar$ MeV·s
Bohr formula	$E_B = -mc^2 \cdot \frac{(Z\alpha)^2}{2n^2}$	$Ryd = m_e c^2 \cdot \frac{\alpha^2}{2} = 13.6 \ eV$
Bohr radius	$r_B = \frac{\hbar c}{\alpha m_e c^2} m c^2 = r_e \alpha^{-2}$	$= 0.53 \cdot 10^{-10} m$
Virial theorem	$2 \cdot \langle T_{kin} \rangle = n \cdot \langle V_{tot} \rangle$	$\langle \rangle$ average of $$
count rate	$N = N_{in} \cdot \rho d \frac{N_A}{A} \cdot \sigma$	

RELATIVISTIC KINEMATICS

		massive	e particles		elmag. radia	ation
total	energy	$\mathbf{E}_{\text{total}} = \sqrt{\mathbf{I}}$ $= \gamma \mathbf{r}$	$p^{2}c^{2} + m_{0}^{2}c^{4}$ $m_{0}c^{2}$		E _{total} = pc = hv	
kineti	c energy	$\mathbf{E}_{kin} = \mathbf{E}_{t}$	$_{\rm otal}-{\rm m_0c}^2$		$= E_{kin}$	
mom	entum	$\mathbf{p} = \gamma \mathbf{I}$	m ₀ c · β		$\mathbf{p} = \frac{\mathbf{E}}{\mathbf{c}}$	
rest r	nass	m ₀ ≠ 0	range in matter		= 0	attenuation in matter
charg	je	Q ≠0	deflection in el	mag. fields	= 0	no deflection
life tir	ne	$\tau=\gamma\tau_0$	decay length l =	: ν τ	$=\infty$	
	relativistic f	actor	$\gamma = \frac{1}{\sqrt{1-\beta^2}},$	$\beta = \frac{v}{c}$	$\lim \gamma - \\ \mathbf{v} \rightarrow \mathbf{c}$	→ ∞

LITERATURE

G. F. KnollRadiation detection and measurement4th edition 2010, John Wiley ans Sons, Inc.

W. R. LeoTechniques for Nuclear and Particle Physics Experiments:
A How-To Approach2nd edition, 1994, Springer-Verlag

Review of Particle Physics (2014) – mainly section 32

K. A. Olive et al. (Particle Data Group), Chinese Physics C, 2014, 38(9):090001.

biennial update