

From the Basics of MRI and PET to Hybrid MR-PET

N. Jon Shah Institute of Neuroscience and Medicine – 4 Research Centre Juelich 52425 Juelich GERMANY

On the Road Towards Metabolic Imaging: Recent Advances

Shah (2014) Brain Structure and Function (in press)

Quantitative Imaging

N. J. Shah et al.

T₁ Mapping

Look and Locker, Rev. Sci. Instr. 41: 250-251 Deichmann and Haase, JMR 1992 96: 608-612 Deichmann et al., MRM 1999 42: 206-209

Implementation

TAPIR (**T**₁ m**A**pping of **P**artial Inversion Recovery)

Shah et al.,; US Patent No.: 6,803,762 Shah et al., NeuroImage: 2001 14(5): 1175-85 Steinhoff et al., Magn. Reson. Med.: 46(1) 131-140 2001 Zaitsev, et al; Magn. Reson. Med.: 49(1) 1121-1132 2003 Shah et al., Hepatology: 2003 38: 1219-26 Tapir: any perissodactyl mammal of the genus Tapirus of South and central America and SE Asia, having an elongated snout, **three-toed** hind legs, and four-toed forelegs.

Phantom Results

Institute of Neuroscience and Medicine

TAPIR: In vivo T₁ Mapping

 Large number of points affords reconstruction of accurate maps

 Multi-exponential fitting is feasible

T₁ mapping enables
 quantitative measurement of water content.

- •S(t) = $M_0 \{1-2exp(t/T_1)\}$
- •... life is not so simple!

White Matter Ο Grey Matter 300-[a.u.] signal intensity [a 00 00 0 10 20 30 40 50 0 image number

 Shah et al.,; US Patent No.: 6,803,762

 Shah et al., NeuroImage: 2001 14(5): 1175-85

 Steinhoff et al., Magn. Reson. Med.: 46(1) 131-140 2001

 Zaitsev, et al; Magn. Reson. Med.: 49(1) 1121-1132 2003

 Shah et al., Hepatology: 2003 38: 1219-26

 31 October 2015

T₂* Mapping

Mansfield: 1984 Spectroscopic Imaging (EPSI)

Phantom and in vivo Results

31 October 20

Mitglied der Helmholtz-Gemeinschaft

Water Mapping

N. Jon Shah, Zaheer Abbas, Vincent Gras, Klaus Moellenhoff, Anca Oros-Peusquens

Water Content Mapping

Water Content in Grey/White Matter In Controls

Neeb et al., 2006a, NeuroImage 31 1156-1168

Institute of Neuroscience and Medicine

Water Content Mapping @ 1.5T

Shah et al., US Patent No.: 6,803,762 Shah et al., NeuroImage: 2001 14(5): 1175-85 Steinhoff et al., Magn. Reson. Med.: 46(1) 131-140 2001 Zaitsev et al; Magn. Reson. Med.: 49(1) 1121-1132 2003 Shah et al., German Patent No.: 10028171 Shah et al., Hepatology: 2003 38: 1219-26 Neeb H, Shah NJ. Magn Reson Med. 2006 56(1):224-9. Neeb H, Zilles K, Shah NJ. NeuroImage. 2006 31(3):1156-68. Neeb H, Zilles K, Shah NJ. NeuroImage. 2006 29(3):910-22. Shah et al., NeuroImage: NeuroImage 2008 41(3):706-17

Test-retest stability

12 measurements

Repositioning

SD of mean values: 0.3%

Voxel-based SD: 1% mean value

Institute of Neuroscience and Medicine

Test-retest stability: mean water content map

Exquisite anatomical detail, e.g. brain stem, thalamus

3T MR-PET

Simultaneous 3T MR-PET Hybrid Measurements

3T MR-PET hybrid scanner showing BrainPET and head coil Simultaneous acquisition of ¹⁸F-FDG-PET and MR images

DEVELOPMENT OF PROTOTYPE 3T MR PET JÜLICH

Weirich,..., Shah (2012) IEEE Trans. Med. Imaging

Cross Calibration of the PET Scanners

- ➢Randoms Correction
- ➤Scatter Correction
- Attenuation Correction of Head
- Normalisation of Crystal Efficiencies
- Deadtime and Pileup Correction
- Attenuation Correction of RF Coil
- ➤MRI Interference Correction

Clinical Applications

K.-J. Langen et al.

Presurgical Imaging on a 3T MR-BrainPET

T1 MPRAGE (6 min)

PET: [¹⁸F]-fluor-ethyl-tyrosine 20 - 40 min p.i.

BOLD imaging: Finger tapping left hand

Fusion

Brain Tumours

¹⁸F- FET PET Clinical Studies

THAACHEN

Hybrid MR-PET Imaging

Hybrid MR-PET imaging

CBF ¹⁵O-Water PET Arterial Spin Labelling

K. Zhang, H. Herzog et al.

First Truly Simultaneous Comparison of CBF Assessed by ¹⁵O-Water PET and ASL

Sequence courtesty of Tom Okell and Peter Jezzard (FMRIB, Oxford)

Averaged Results

0.0

ml/min/100ml

120.0

Averaged CBF images (n=10) after normalisation to MNI space ASL: $51.9 \pm 7.1 \text{ ml}/100 \text{g/min}$

PET: 48.1 ± 9.9 ml/100g/min Slide 30

High-Field MRI

9.4T Whole-Body Scanner in Jülich

- 60 cm patient bore
- TQ-engine gradient coil50 cm FoV
- Magnet weight: 57 tonnes870 tonnes of iron shielding
- 3.70 m length
- Stored energy: 182.0 MJ
- Length of wire: 750 km

Complete with Hybrid PET Capability!

Institute of Neuroscience and Medicine

Structural Imaging

A.-M. Oros-Peusquens, J. Lindemeyer et al.

Hippocampus, thalamus

callosum fornix and plexus choroideus

corpus

external globus pallidus

entorhinal cortex

hippocampus

Institute of Neuroscience and Medicine

Anterior Hippocampus

cornu ammonis (CA2)

cornu ammonis (CA1) entorhinal cortex subiculum

gyrus dentatus

Structural imaging at 9.4T with (0.5mm)³ resolution

JÜLICH

Phase Imaging at 9.4T (in vivo)

Phase

Unwrapped Phase (URSULA) \rightarrow Fieldmap

Background-Corrected (MUBAFIRE)

GRE 0.5mm isotropic, slab-selective excitation (central brain)

Phase Imaging at 9.4T (in vivo)

• Background-corrected field and susceptibility at 1mm isotropic, whole brain coverage

Phase Imaging at 9.4T (post mortem)

• Phase of cerebellum at 0.24mm isotropic

Towards MR histology...

MR-PET @ 9.4T

N. J. Shah, H. Herzog, C. Weirich et al.

9.4T MR-PET

Positron Range at 9.4T using the "lida" Brain Phantom

<u>Shah et al.</u> (2014) *PLoS ONE* (in press)

Polymer brain phantom filled with ¹²⁰I

Institute of Neuroscience and Medicine

Rat Bone Scan with ¹⁸F-Fluoride

Shah (2014) BS&F (in press)

Opportunities for Hybrid MR-PET

... MRI

- \Rightarrow Higher spatial resolution (structural imaging)
- ⇒Higher functional (BOLD) contrast => columnar resolution fMRI?
- ⇒Better image quality (contrast)
- \Rightarrow Non-proton MRI and spectroscopy

... PET

- \Rightarrow Partial volume correction with MRI
- ⇒Attenuation correction with MRI
- \Rightarrow Motion correction with MRI (navigator echoes)

... Hybrid MR-PET

 \Rightarrow Patient / volunteer compliance: 2 scans in 1 (at 3T and 9.4T)

- \Rightarrow Metabolic imaging (e.g. FDG + 17O + 31P + 23Na + MP-RAGE)
- \Rightarrow Accurate receptor density mapping
- \Rightarrow Novel paradigms for brain function

Opportunities – Metabolic Imaging

- ... Sodium
- \Rightarrow Na / K Pump
- \Rightarrow Disturbances of the pump often leads to cell death
- \Rightarrow Intra vs extracellular sodium with TQF
- ... Phosphorus
- \Rightarrow Energy metabolism of the cell
- \Rightarrow In vivo pH
- ... Oxygen
- \Rightarrow Intimately involved in metabolism!
- ⇒
- ... Glucose
- ⇒ Energy substrate of the brain
 ⇒ FDG PET

Sodium Imaging

S. Romanzetti, D. Fiege, N. J. Shah et al.

First In vivo 9.4 T results

Anatomy - 1H MP-RAGE 4T 1 mm isotropic 5 min acq. time

Sodium – 4T TPI 2 mm isotropic 15 min acq. time

In vivo measurements (23Na)

Institute of Neuroscience and Medicine

Sodium Imaging (2x2x2mm³ in 7 minutes)

In vivo ²³Na Imaging with TPI steady state (TR/TE/flip = 50/0.4/60 [ms/ms/deg])

Fiege, Romanzetti, ..., and <u>Shah</u> (2013) *Magn. Reson. Med.* Fiege, Romanzetti, ..., and <u>Shah</u> (2013) *J. Magn. Reson.* Romanzetti, ..., and <u>Shah</u> (2014) *NeuroImage (in press)*

²³Na TQF in vivo 9.4 T results

MP-RAGE PET SISTINA SQ mmol/l 0 60 120 SISTINA TQF **FLAIR**

In vivo results from three tumour patients.

Goal: Non-invasive Quantitative Metabolic JÜLICH Imaging of Oxygen

31 October 2015

Institute of Neuroscience and Medicine

Slide: Atkinson et al. U. of Chicago

Oxygen Imaging

K. Moellenhoff and N. J. Shah

¹H MR Spectroscopy

D. Tse and N. J. Shah

³¹P MR Spectroscopy

D. Tse and N. J. Shah

Temporal Aspects

I. Neuner, J. Arrubla and N. J. Shah

Acknowledgements

Dr. J. Felder A. Celik K. Vahedipour C. Mirkes

MR Group

T. Okell / P. Jezzard (Oxford)

SIEMENS / BMBF

Dr. J. Scheins Dr. E. Rota-Kops L. Tellmann

PET Group

Dr. N. Galdiks Dr. G. Stoffels Dr. C. Filß

Brain Tumour Group

Thank You!!

Collaboration Opportunities

Visiting Scholars / Guest Scientists

- Postdocs
- Graduate Students