J. Wolters: Numerical Simulations and Design Calculations

Central Institute for Engineering, Electronics and Analytics | ZEA

Central Institute for Engineering, Electronics and Analytics

ZEA-1 – Engineering und Technology

IÜLICH

Georgian-German ScienceBRIDGE

NNECTING PEOPLE AND KNOWLEDGE

ZEA-1 – Engineering and Technology

by guiding principles

- ZEA-1 is a scientific and technical institute supporting the research institutes. at Forschungszentrum Jülich as a competent partner.
- \blacktriangleright We design, develop, and fabricate scientific and technical equipment, instruments, and processes that are not commercially available, both for the institutes at Forschungszentrum Jülich and for third parties.
- We maintain and modify instruments, refine them, provide technology \succ consulting for our customers, and compile feasibility studies.
- With our competence and extensive experience, we meet our customers' and partners' requirements in a quick and flexible manner.
- We extend our expertise and acquire new know-how as and when required by our customers.
- We offer attractive and future-oriented jobs and training.
- Our excellence and our strong emphasis on customer needs play a decisive part in helping Forschungszentrum Jülich achieve its objectives.

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1

Technology for World-Class Research

The Benefit of Modern Simulation Tools

analysis of complex systems possible

- fast and easy design optimization in terms of material stressing, weight, stiffness …
- identification of faulty designs and weak spots in the early development phase
- minimization/optimization of costly experiments*
- results are available everywhere in the system
- assessment of lifetime

*nevertheless, in most cases experiments are also indispensable in prototype development and only the combination of simulations and experiments will lead to optimal results

enhanced product quality

- shortening of development phases
- reduction of development costs

Central Institute for Engineering, Electronics and Analytics | ZEA

Software at ZEA-1 (FEM / CFD / others)

HPC Hardware at ZEA-1

8 compute nodes 80 cores 10 Gbit/s Ethernet network 464 GB main memory storage cluster Skylake1 as file server

10 compute nodes (+ 3 nodes for login / service) 48 cores / node = 480 cores 100 Gbit/s InfiniBand network 4608 GB main memory

GPFS storage cluster

Central Institute for Engineering, Electronics and Analytics | ZEA

Fields of Competence

FEM

$FEM = \underline{F}inite \underline{E}lement \underline{M}ethod$

- numerical method
 - partitioning domain into small, non-overlapping subdomains the finite elements
 - local functions approximate global solution
- applicable for differential equations for almost all technical problems

Central Institute for Engineering, Electronics and Analytics | ZEA

FEM - Theory Image: Second State State

Shape functions interpolate the element solution between the discrete values obtained at mesh nodes, e.g. displacements

example: linear bar element

Element strain given by derivative with respect to x:

$$\varepsilon(x) = \frac{du(x)}{dx} = \frac{d[N]}{dx} \{U\} = \underbrace{\left[-\frac{1}{L} \quad \frac{1}{L}\right]}_{[B]^{(e)}} \binom{U_1}{U_2} = \frac{(U_2 - U_1)}{L} = \frac{\Delta L}{L}$$

{u} (e): solution within element

[N]^(e): shape functions of element

{U}^(e): discrete values at nodes /

element degrees of freedom

general formulation

 ${u}^{(e)} = [N]^{(e)} {U}^{(e)}$

 $\{\varepsilon\}^{(e)} = [D][N]^{(e)}\{U\}^{(e)} = [B]^{(e)}\{U\}^{(e)}$

[D]: matrix differentiation operator

[B]^(e): displacement differentiation matrix

Central Institute for Engineering, Electronics and Analytics | ZEA

FEM - Theory

by potential energy function for linear elastic materials

The total potential energy Π is given by the strain energy U and the work potential W of external loads:

$$\Pi = U + W = \frac{1}{2} \int_{V} \{\varepsilon\}^{T} \{\sigma\} dV - \int_{\underbrace{V}} \{u\}^{T} \{p^{V}\} dV - \int_{\underbrace{S}} \{u\}^{T} \{p^{S}\} dS - \sum_{i} \{u\}^{T}_{i} P_{i}$$

example: linear bar element

general formulation

$$\sigma(x) = E \cdot \varepsilon(x) = E \cdot \frac{(U_2 - U_1)}{L}; dV = A(x) \cdot dx$$
$$\Pi = \frac{1}{2} \int_0^L E \cdot \frac{(U_2 - U_1)^2}{L^2} \cdot A(x) dx - F_1 \cdot U_1 - F_2 \cdot U_2$$
$$= \frac{1}{2} E \cdot \frac{(U_2 - U_1)^2}{L^2} \cdot \int_0^L A(x) dx - F_1 \cdot U_1 - F_2 \cdot U_2$$

$$\Rightarrow \Pi = \underbrace{\frac{1}{2} \cdot \frac{E \cdot A_m}{L} (U_2 - U_1)^2}_{U} \underbrace{-F_1 \cdot U_1 - F_2 \cdot U_2}_{W}$$

$$\Pi = \frac{1}{2} \int_{V} \left([B]^{(e)} \{U\}^{(e)} \right)^{T} [E] \left([B]^{(e)} \{U\}^{(e)} \right) dV$$
$$- \int_{V} \left([N] \{U\} \right)^{T} \{p^{V}\} dV - \int_{S} \left([N] \{U\} \right)^{T} \{p^{S}\} dS$$
$$- \sum_{i} \left([N] \{U\} \right)^{T}_{i} P_{i}$$

 $\{\sigma\}^{(e)} = [E]^{(e)} \cdot \{\varepsilon\}^{(e)} = [E]^{(e)} [B]^{(e)} \{U\}^{(e)}$

[E]^(e): elasticity matrix Central Institute for Engineering, Electronics and Analytics | ZEA

FEM - Theory

potential energy function for linear elastic materials

The system is at a stable/stationary position when an infinitesimal variation from such position (discrete values {U}) involves no change in the total potential energy:

example: linear bar element

general formulation

$$\begin{cases} \frac{\partial \Pi}{\partial U} \\ \frac{\partial \Pi}{\partial U} \\ \end{cases} = \begin{cases} \frac{\partial \Pi}{\partial U_1} \\ \frac{\partial \Pi}{\partial U_2} \\ \frac{\partial \Pi}{\partial U_2} \\ \end{cases} = \begin{cases} \frac{\partial \left(\frac{1}{2} \cdot \frac{E \cdot A_m}{L} (U_2 - U_1)^2 - F_1 \cdot U_1 - F_2 \cdot U_2\right)}{\partial U_2} \\ \frac{\partial \left(\frac{1}{2} \cdot \frac{E \cdot A_m}{L} (U_2 - U_1)^2 - F_1 \cdot U_1 - F_2 \cdot U_2\right)}{\partial U_2} \\ \frac{\partial U_2}{\partial U_2} \\ \end{cases} = \{0\} \qquad \begin{cases} \frac{\partial \Pi^{(e)}}{\partial U^{(e)}} \\ \frac{\partial \Pi^{(e)}}}{\partial U^{(e)}} \\ \frac{\partial \Pi^{(e)}}{\partial U^{(e$$

[K]^(e): element stiffness matrix

Central Institute for Engineering, Electronics and Analytics | ZEA

FEM - Theory ⅍ connecting elements

example: linear bar element

Expanding element set of equations

$$\begin{bmatrix} \frac{E_1 \cdot A_{m,1}}{L_1} & -\frac{E_1 \cdot A_{m,1}}{L_1} & 0\\ -\frac{E_1 \cdot A_{m,1}}{L_1} & \frac{E_1 \cdot A_{m,1}}{L_1} & 0\\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} U_1\\ U_2\\ U_3 \end{pmatrix} = \begin{pmatrix} F_1\\ F_2^{(1)}\\ 0 \end{pmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{E_2 \cdot A_{m,2}}{L_2} & -\frac{E_2 \cdot A_{m,2}}{L_2} \\ 0 & -\frac{E_2 \cdot A_{m,2}}{L_2} & \frac{E_2 \cdot A_{m,2}}{L_2} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} 0 \\ F_2^{(2)} \\ F_3 \end{bmatrix}$$

Superposition

$$\begin{bmatrix} \frac{E_1 \cdot A_{m,1}}{L_1} & -\frac{E_1 \cdot A_{m,1}}{L_1} & 0\\ -\frac{E_1 \cdot A_{m,1}}{L_1} & \frac{E_1 \cdot A_{m,1}}{L_1} + \frac{E_2 \cdot A_{m,2}}{L_2} & -\frac{E_2 \cdot A_{m,2}}{L_2}\\ 0 & -\frac{E_2 \cdot A_{m,2}}{L_2} & \frac{E_2 \cdot A_{m,2}}{L_2} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} F_1 \\ 0 \\ F_3 \end{bmatrix}$$

$$F_2^{(1)} + F_2^{(2)} = 0$$
 (inner forces)

general formulation

$$\sum_{i=1}^{n_{el}} [C]^{(i)^T} [K]^{(i)} [C]^{(i)} \{U\} = \sum_{i=1}^{n_{el}} [C]^{(i)^T} \{F\}^{(i)}$$

[C]⁽ⁱ⁾: logic element connection matrix

 $\Rightarrow [K]{U} = {F}$

Central Institute for Engineering, Electronics and Analytics | ZEA

FEM - Theory fixed degrees of freedom

reduced set of equations:

$$[K]'{U}' = {F}' \Rightarrow {U}' = [K]'^{-1}{F}'$$

reaction forces:

$$\Rightarrow \{F\} = [K]\{U\}$$

Central Institute for Engineering, Electronics and Analytics | ZEA

FEM - Theory ∜ accuracy of solution

example:

$$A_L = \frac{1}{2}A_0; L_i = \frac{L}{n}; E_i = E$$

$$\Rightarrow A_{m,i} = \frac{4 \cdot n - 2 \cdot i + 1}{4 \cdot n}A_0$$

Analytic solution:

$$u_r(x) = \frac{u(x)}{\frac{F \cdot L}{A_0 \cdot E}}$$
$$\Rightarrow u_r(x) = \ln \left[\left(\frac{1}{1 - \frac{x}{2L}} \right)^2 \right]$$

$$\sigma_r(x) = \frac{\sigma(x)}{\frac{F}{A_0}}$$
$$\Rightarrow \sigma_r(x) = \frac{1}{1 - \frac{x}{2L}}$$

-Gemeinschaft

Mitglied der Helmholtz-

Central Institute for Engineering, Electronics and Analytics | ZEA

FEM - Theory honlinear systems

Three types of nonlinearities large displacements

Mitglied der Helmholtz

structural (e.g. contact)

Central Institute for Engineering, Electronics and Analytics | ZEA

FEM - Theory

✤ nonlinear systems

If the stiffness matrix depends on deformations $[K({U})]{U} = {F}$, the system has to be solved iteratively:

Central Institute for Engineering, Electronics and Analytics | ZEA

FEM - Theory honlinear systems

Newton-Raphson Method to solve nonlinear Systems

FEM - Theory honlinear systems

Newton-Raphson Method to solve nonlinear Systems

FEM – Theory further applications

Diffusion:	$[D]{C} = {Q}$	[D]: diffusion coefficient{C}: concentration{Q}: sources
Electrostatic:	$[\chi]\{\varphi\} = \{Q\}$	[χ]: dielectricity { φ }: electric potential {Q}: charge
vith damping:		
Temperature:	$[C]\{\dot{T}\} + [K]\{T\} = \{Q(t)\}$	[C]: heat capacity [K]: conductivity {T}: Temperature {Q}: heat source
Magnetic fields:	$[C]{\dot{A}} + [K]{A} = {F(t)}$	[C]: electric conductivity [K]: magnetic permeability {A}: vector potential {F}: current density
with inertia and da	mping:	
Dynamics:	$[M]{\dot{U}} + [C]{\dot{U}} + [K]{U} = {F(t)}$	[M]: mass (inertia) [C]: damping [K]: stiffness

can also be solved using explicit solvers

Engineering und Technology | ZEA-1 Technology for World-Class Research

L

CFD - Theory ↔ CFD = computational fluid dynamics

- Numerical method for solving partial differential equations representing conservation laws for mass, momentum, energy and species for fluid flows.
- Domain is discretized into a finite set of control volumes or cells. The most commonly used method for CFD is the Finite-Volume-Method.
- Control volume balance for a general flow variable ϕ can be expressed by: rate of change = net convective flux + net diffusive flux + net creation rate
- The Navier-Stokes equations are the general form of the equation of motion for a viscous fluid.
- Typical numerical methods to consider flow turbulence:
 - DNS (direct numerical simulation): all eddies are resolved by a very fine mesh
 => this method is time consuming and requires huge computational resources
 - RANS (Reynolds-Averaged Navier-Stokes): a turbulence model describes all effects of turbulence on the flow
 - => this is the most commonly used method for technical applications; stationary analyses are possible and computational costs are low
 - LES (large eddy simulations): only the largest eddies are resolved by the mesh and smaller eddies are considered by a turbulence model
 => compromise between DNS and RANS

Setting up numerical simulations with FEM/CFD \$\important aspects for a design engineer

Knowledge and experience of the engineer

- which design rules have to be applied?
- what are the requirements of the design rules, what are the safety-related acceptance targets and criteria, what are the limits?

- which physical effects and details are important?
- how can the problem be simplified?
- how does the material behave, which material parameters are applicable and proven?
- which software is suitable to solve the problem?
- implementation of new methods / models necessary?

- how big is the error due to the meshing, where is a mesh refinement necessary?
- how to model the boundary conditions, how to cover uncertainties in the boundary conditions?
- chose appropriate solvers, solver settings, load steps and convergence criteria!
- estimate necessary computational resources!
- validate model!
- assess results according to design rules!

Central Institute for Engineering,

FATIMA – Test Facility ✤ fatigue tests at high strain rates

Central Institute for Engineering, **Electronics and Analytics | ZEA**

Electronics and Analytics | ZEA

Buckling analysis for a vacuum vessel Scrista @ Geophysica

Central Institute for Engineering, **Electronics and Analytics | ZEA**

Deformations, mm

Central Institute for Engineering, Electronics and Analytics | ZEA

Design of Proton Beam Windows

- > AGATE (<u>Advanced Gas-cooled Accelerator-driven Transmutation Experiment</u>)
- > the spallation target serves as continuous neutron source for a subcritical reactor
- the PBW separates the accelerator vacuum from the target coolant (60bar helium)
- water at 3 bar is used for the PBW cooling

Design of Proton Beam Windows Section 4 Sectio

- ESS (European Spallation Source)
- the spallation target serves as neutron source for scientific experiments
- the PBW separates the accelerator vacuum from the helium atmosphere in the target room (1 bar helium)

Engineering und Technology | ZEA-1

Technology for World-Class Research

Design of Proton Beam Windows

b design concepts for different boundary conditions

equivalent stress, MPa

equivalent stress, MPa

Ter Ter	mperature nperatures 9.919e+001
	9.145e+001
	8.370e+001
	7.595e+001
	6.821e+001
	6.046e+001
	5.271e+001
	4.496e+001
	3.722e+001
	2.947e+001
	2.172e+001
[C]	1

Central Institute for Engineering, Electronics and Analytics | ZEA

Design of Proton Beam Windows

resultant stresses due to thermal and mechanical loading

calculated utilization factors

Central Institute for Engineering, **Electronics and Analytics | ZEA**

Design of ESS Mercury Target b configuration

Central Institute for Engineering, Electronics and Analytics | ZEA

Design of ESS Mercury Target

b thermal hydraulic design

Focus on:

- cooling of beam entrance window
- heat removal capacity

Design of Magnetic Shielded Room

der

Thermal Design of Correction Coils § for neutron spin echo spectrometer @SNS

JÜLICH FORSCHUNGSZENTRUM

- current density in the coil was calulated
- thermal load due to high current modeled
- cooling by bonded cooling plate was considered

Temperature distribution in the coil

simulation

measurement

Central Institute for Engineering, Electronics and Analytics | ZEA

Kapton foil window for a vacuum chamber

Optimization of the chopper disk contour

Lysimeterpress

✤ introduction

- Lysimeters are tubes containing soil samples for scientific experiments in the field of agricultural and environmental research
- > The tubes are pressed into the soil and afterwards excavated
- A sintered metal plate is used to cut the soil column and to seal the lysimeter

Lysimeterpress

b optimization of lysimeterpress

Project start: typical engineering task -> optimization of design

Central Institute for Engineering, Electronics and Analytics | ZEA

Lysimeterpress

Technology for World-Class Research

b optimization of lysimeterpress

Project progress: scientific aspect -> soil state in lysimeter

Inlet system for HALO

maximum distance to the LIF unit

Central Institute for Engineering, Electronics and Analytics | ZEA

Inlet System for HALO

Engineering und Technology | ZEA-1 Technology for World-Class Research

bird strike event

- the 'Bird strike' load case is a critical design issue for the inlet system and has to be investigated (requirement of the Federal Office of Civil Aeronautics)
- the inlet system must be robust enough to avoid impact of broken-off parts into the engines or the tail assembly
- but if the inlet system is too stiff and totally 'captures' a bird (this would be the case if the restrictor is fixed to the inlet tubes) the aircraft shell can be seriously damaged

Inlet System for HALO

bird strike simulation

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1 Technology for World-Class Research

Gemeinschaft

Mitglied der Helmholtz-

Inlet system for HALO

♦ bird strike test

Central Institute for Engineering, Electronics and Analytics | ZEA

Mechanical Design of Vacuum Chambers

- > The TOPAS vacuum chamber was designed to withstand the outer pressure of 1 bar
- Weld seams could not be modeled in detail in the global model, therefore a simplified contact approach was used to determine critical regions..
- For the critical regions a sub-model was investigated in detail.

Chopper Design b introduction

- Neutron beams are useful probes for studying the arrangement of atoms in materials
- A neutron chopper is essentially a disc rotated at high speed with one or more 'windows', which the neutrons can pass unhampered at particular points in time
- By arranging several choppers one after another - special neutron pulses can be selected
- D: drive system At ZAT maintenance-free magnetic A: axial stabilization R: radial bearing bearings are used for such chopper systems at high rotational speeds and operating in vacuum.
- Beside neutron choppers ZAT also developed and built neutron, light pulse and x-ray pulse selectors

C: disc

Central Institute for Engineering, Electronics and Analytics | ZEA

Mitglied der Helmholtz-Gemeinschaft

optimization of disc contour

MQAL SOUFFACE THE ALL SOUFFACE SUB-1 THE AL

optimization of slit contour

Central Institute for Engineering, Electronics and Analytics | ZEA

Chopper Design

0 ms: initial conditions - disc with crack

 ~4 ms: rotational speed of disc
 ≅ rotational speed of housing (end of plastic impact)

0.2 ms: disc crash on housing, housing starts to rotate in its bearings

20 ms: end of simulation – the housing is still rotating but the remaining kinetic energy is less than 1% of the initial energy

2,3 ms: first adapter shears-off due to rotation of housing

Central Institute for Engineering, Electronics and Analytics | ZEA

Copper Slag Cleaning Process

Selectromagnetic stirring to intensify the cleaning process

I ICH

