# An Introduction to the Basics of Magnetic Resonance Imaging







### The Hydrogen Atom and Protons

- The most common element in the body
- Highest sensitivity to magnetic resonance
- Hydrogen ion (proton) is positively charged



# **Spin**

A particle rotating upon its own axis

• Electrons, protons, and neutrons spin

 Spinning, charged particles have a magnetic moment





# **Spin Orientation**

- Represented by a vector
- A vector is represented by an arrow

 The arrow denotes direction and magnitude



# **Net Magnetization**

• Spins outside a magnetic field = 0

Spins randomly orientated

Opposite spins cancel each other





# Up Spin vs Down Spin

- Spins point up or down parallel to the magnetic field
- There are slightly more spins pointing up
- Up spins are slightly lower in energy
- Down spins are slightly higher in energy



# **Number of Excess Spins**

- Increases with the density of protons in the volume measured
- Increases dependent on the magnetic field strength
- **Decreases** as temperature increases
- May be expressed in ppm

### Precession

• A spinning particle rotating upon its axis in the presence of a magnetic field

Precession occurs about the axis of the magnetic field; (z axis)



### Larmor Frequency

 Frequency at which a spin precesses about an external magnetic field

 Dependent on type of nucleus and strength of the magnetic field

### Phase

 Random phase = net magnetization of zero in the x-y plane

Relative only to the excess spins

## **Phase Coherence**

- In phase = pointing the same direction
- Phase coherence = in phase
- The sum of the vectors of in-phase spins creates net magnetization in the x-y plane



### Resonance

Oscillation at a specific frequency

 In resonance = oscillation at the same frequency in acoustic response to the initial oscillation



# **RF Pulse**

Applied to spins within the magnetic field

Applied at the Larmor frequency

Will deflect spins from equilibrium

# The Spiral

 Your perception of the net magnetization from outside the magnetic field



# Merry-go-round

 Your perception of the net magnetization at the centre of the magnetic field



# **Magnetization and Flip Angles**

- Flip Angle (๑) = the total amount of deflection of the magnetization after the end of an applied RF pulse
- The stronger the energy of the applied RF pulse, the greater the flip angle







# **The MR Signal**

- Longitudinal magnetization (M<sub>z</sub>) is in the z-direction, along the external magnetic field
- Transverse magnetization (M<sub>xy</sub>) is in the x-y plane, perpendicular to the external magnetic field
- Spins must be in the x-y plane in order for us to receive an MR signal



### **Electromagnetic Induction**

 The voltage generated in a receiver coil caused by a changing magnetic field

## **Decay**

- RF is turned off
- Loss of phase coherence causes transverse decay
- **FID** = free induction decay
- As transverse magnetization decays longitudinal magnetization recovers


### **The MR Experiment**

- 90° pulse causes deflection of spins
- RF turned off

 Spins precess in the x-y plane and slowly return to equilibrium



# Spin Recovery and Echoes

- Rotation of the transverse magnetization generates MR signal
- Spin coherence decays

Longitudinal magnetization is recovered

- T<sub>1</sub> = the time it takes for 63 % of longitudinal magnetization recovery
- 5T<sub>1</sub> = the time it takes for spins to fully recover back to the z axis
- T<sub>1</sub> is tissue specific

### Longitudinal Relaxation (T<sub>1</sub>)







### **Transverse Relaxation**

 Transverse relaxation = loss of phase coherence of spins in the transverse plane (x-y). Non-recoverable!!!



### T<sub>2</sub> Relaxation

- T<sub>2</sub> relaxation = spin spin relaxation
- T<sub>2</sub> is the destroying of transverse magnetization
- T<sub>2</sub> occurs faster than T<sub>1</sub> relaxation



### **Transverse Phase Coherence**

 Runners at the starting line are said to be phase coherent

 phase coherent = all at the same point in the transverse plane



**Coherence Loss** 

- As runners spread out they are said to lose coherence
- Runners are not at the same point in the transverse point in the transverse plane







### Rephasing

- By turning the runners around 180°, they will catch up to each other at the starting point
- They will regain phase coherence or rephase at that point

### T<sub>2</sub>\* Relaxation

- $T_2^*$ : the *effective*  $T_2$  time constant
- T<sub>2</sub><sup>\*</sup>: accounts for magnetic field inhomogeneity dephasing
- T<sub>2</sub><sup>\*</sup>: is always faster than T<sub>2</sub>







 Regaining of phase coherence at the starting point is called an echo

### Spin Echo

### Spin Echo Sequence = 90° - 180° with a repetition time TR





### **Echoes**

### Become smaller over time

### • T2\* < T2 < T1



# How Pulse Sequences generate Contrasts

### **Tissue Contrast**

- T1: contrast based on different T1 times of different tissues
- T2: contrast based on different T2 time of different tissues
- **Proton Density**

contrast based on different proton concentrations of different tissues









### **Encoding Slices and Images**

### **Spatial Information**

- Where inside the magnet did the signal come from?
- Gradient = the linear increase or decrease of the magnetic field strength in a given direction



### Gradients

- Gradient coils are in pairs
- The pairs are of equal and opposite polarity
- Each either increases or decreases the magnetic field strength by a specific amount
- There are three sets of gradient coils in the magnet: x, y and z



### **Slice Selection**

- Inhomogeneity induced by the gradients cause spins to resonate at different frequencies
- only protons spinning at the same frequency as an applied RF pulse will respond





### **Slice Select Gradient**

### **Slice select:**

- x sagittal
- y coronal
- z transverse



### **Frequency Encoding**

 Fourier transformation = mathematical procedure used to convert measured time-domain signal into frequency components

• Frequency gradient = readout gradient



### **Phase Encoding**

 Location of spins in a particular row is determined by the phase shift of different frequencies

 Phase shift between spins is directly proportional to their location

### MR Angiography of the Aorta



Turbo MRA, TR = 4.2 ms, TE = 1.7 ms, 2.0x1.8x1.4 mm<sup>3</sup>, TA = 19 sec courtesy Dr. Wan, Chang Gung Mem. Hospital, Taipei

### Diffusion

#### Turbo SE

#### Diffusion / EPI

#### **Diffusion / EPI**

R Ovorage



Acute stroke (4 h after onset)

### Diffusion

#### T<sub>1</sub> - Turbo SE

#### $T_2$ - Turbo SE

#### **Diffusion / EPI**

n overdri



#### Acute stroke (24 h after onset)

### **High Resolution Imaging**



Clinical Imaging Package

→ Small LP Ring Coil
→ Pixel size: only 0.2 mm

### **MR Cardio**



**Navigator Scan** 

TSE and clinical applications

**Turbo Spin Echo** 

4500 ms TR 96 ms TEeff 8:12 minutes 1 acq 2 mm 180 mm FoV 378\*512 matrix 0.4 mm gap

> 7 echoes 1.5 T



## **True Fisp: 512 Matrix**



#### measurement time 4 seconds !

true Fast Imaging with Steady Precession