

Practices, October 12 and 13 Numerical Simulation of a Heat Transfer Problem with ANSYS

Jörg Wolters, FZJ – ZEA-1

1. day

- Introduction to FEM (finite element analysis)
- Exercise: Cooling of electronic components

 a) building the geometry
 b) defining material properties
 c) simplified thermal simulation
 d) more precise thermal simulation with fluid elements

2. day

der

Mitglied o

- Introduction to CFD (computational fluid dynamics)
- Exercise: Cooling of electronic components e) CFD simulation

Central Institute for Engineering, Electronics and Analytics | ZEA

Introduction

Public known from e.g. crash simulations for automobile industry

Source: Institute for technical and numerical mechanics, University of Stuttgart

Central Institute for Engineering, Electronics and Analytics | ZEA

Introduction

✤ Finite Element Method (FEM) – how does it work?

- The Finite Element Method (FEM) is a numerical method for solving problems (differential equations) of engineering and mathematical physics.
- Useful for problems with complex geometries, loadings, and material properties, for which analytical solutions are not available any more.
- Applicability: structural/stress analyses, heat transfer, electromagnetic fields, crash, fluid dynamics, fracture mechanics, acoustics
- The whole domain is divided into small elements for which the field variables (e.g. displacements for mechanical problems) are interpolated from values at the corners (nodes) by approximating functions. The values of the field variable at the element nodes become the unknown of the problem, from which all other values can be derived (e.g. strains and stresses for structural analyses).

- Recombining all sets of element equations into a global system of equations, the problem can be solved for the whole domain.
- Important: The solution of a finite element analysis is not exact but only an approximation that strongly depends on the discretization and the approximating Central Institute for Engineering, Electronics and Analytics | ZEA functions.

Introduction Sinite Element Method (FEM) – what are the Benefits?

- identification of faulty designs and weak spots in the early development phase
- analysis of complex systems possible
- minimizing costly physical testing*
- results are available everywhere in the system
- fast and easy design optimization in terms of material stressing, weight, stiffness ...
- assessment of lifetime

*nevertheless, in most cases experiments are also indispensable in prototype development and only the combination of simulations and experiments will lead to optimal results

- enhanced product quality
- shortening of development phases
- reduction of development costs

Central Institute for Engineering, Electronics and Analytics | ZEA

Service details

Geometry

Central Institute for Engineering, Electronics and Analytics | ZEA

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 6 von 99

Central Institute for Engineering, Electronics and Analytics | ZEA

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 7 von 99

Service details

Boundary Conditions

ANSYS He-Inlet mass flow rate: 0.5 g/s pressure: 10 bar inlet temperature: 20°C density: 1.634 kg/m³ Inlet velocity: ~120 m/s specific heat capacity: 5200 J/(kg K) Reynolds number: ~17700 (turbulent) conductivity: 0.15 W/(m K) viscosity: 2e-5 N·s/m² heat transfer coefficient: ~ 4000 W/(m K)

Geometry 09.09.2015 10:42

Carbon Fibre Laminate Carbon Foam Ceramic Stainless Steel

He

Electronics heat generation: 1.5 W per block total heat: $24 \cdot 1.5 \text{ W} = 36 \text{ W}$

Thermal conductivity of materials:

carbon foam: 70 W/(m K) ceramics: 4.5 W/(m K) 15 W/(m K) steel: carbon fiber laminate: 10 W/(m K) (in plane) 0.5 W/(M K) (vertical)

25.00

Central Institute for Engineering, Electronics and Analytics | ZEA

location simulation project

ÜLICH

Start WB16.2 from desktop

Drag and Drop with LMB (left mouse button) 'Steady-State Thermal' to Project Schematic

Central Institute for Engineering, Electronics and Analytics | ZEA

Main Menu => File => Save As... (choose directory and project name)

Engineering und Technology | ZEA-1 **Technology for World-Class Research**

 \geq

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1 Technology for World-Class Research

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 10 von 99

part a): building the geometry - toolbars

Selection Tools:

Select:
Select:

View options:

View Options can be accessed via toolbar

- S Rotate
- 🕂 Pan
- 🔍 Zoom

- Much quicker is Middle Mouse Button (MMB) with key changes
 - Rotate
 - Shift + MMB : Zoom
 - Ctrl + MMB : Pan

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1 Technology for World-Class Research

Mitglied der Helmholtz-Gemeinschaft

♦ part a): building the geometry – foam

- Main Menu => Units => mm
- Main Menu => Create => Primitives => Box
- Details View: Enter dimensions (point 1: -5mm, -1.5mm,0mm; diagonal: 10mm, 3mm, 200mm)
- Main Menu => Tools => Freeze (protects body from being merged with other bodies)

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 12 von 99

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 13 von 99

- Main Menu => Create => Primitives => Cylinder
- Details View:

Details View 4				
Details of Cylinder1				
Cylinder	Cylinder1			
Base Plane	XYPlane			
Operation	Add Material			
Origin Definition	Coordinates			
FD3, Origin X Coordinate	0 mm			
FD4, Origin Y Coordinate	0 mm			
FD5, Origin Z Coordinate	-200 mm			
Axis Definition	Components			
FD6, Axis X Component	0 mm			
FD7, Axis Y Component	0 mm			
FD8, Axis Z Component	420 mm			
FD10, Radius (>0)	1 mm			
As Thin/Surface?	No			
	etails View Details of Cylinder1 Cylinder Base Plane Operation Origin Definition FD3, Origin X Coordinate FD4, Origin Y Coordinate FD5, Origin Z Coordinate Axis Definition FD6, Axis X Component FD7, Axis Y Component FD8, Axis Z Component FD10, Radius (>0) As Thin/Surface?			

- ➤ Toolbars =>] ³/₂ Generate</sub>
- Main Menu => Tools => Freeze

Central Institute for Engineering, Electronics and Analytics | ZEA

Exercise: Cooling of electronic components ⇔ part a): building the geometry – cooling pipe / inner dimension

- Main Menu => Create => Primitives => Cylinder
- **Details View:**

Details View 🕈			
-	Details of Cylinder2		
	Cylinder	Cylinder2	
	Base Plane	XYPlane	
	Operation	Add Material	
	Origin Definition	Coordinates	
	FD3, Origin X Coordinate	0 mm	
	FD4, Origin Y Coordinate	0 mm	
	FD5, Origin Z Coordinate	-200 mm	
	Axis Definition	Components	
	FD6, Axis X Component	0 mm	
	FD7, Axis Y Component	0 mm	
	FD8, Axis Z Component	420 mm	
	FD10, Radius (>0)	0.9 mm	
	As Thin/Surface?	No	

- Toolbars => 🛛 🗦 Generate
- Main Menu => Tools => Freeze
- Toolbars => 🍭 📑

Mitglied der Helmh

Exercise: Cooling of electronic components ♦ part a): building the geometry – intersect cylinders

Toolbars => $\overline{\bigcirc}$ (Zoom in):

- Toolbars => (Select Bodies 'Ctrl' + 'B')
- Toolbars => (Box Select): Select both cylinders

Engineering und Technology | ZEA-1 **Technology for World-Class Research**

Toolbars => 🛛 🗦 Generate

>

Seite 16 von 99

♦ part a): building the geometry – subtract cylinders from foam

Main Menu => Create => Boolean

Details View:

Toolbars => 🛛 🗦 Generate

Central Institute for Engineering, Electronics and Analytics | ZEA

♦ part a): building the geometry – generating parts

Engineering und Technology | ZEA-1

Technology for World-Class Research

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 18 von 99

Exercise: Cooling of electronic components ♦ part a): building the geometry – electronic components

- Main Menu => Create => Primitives => Box
- **Details View:**

Petails View 🕈				
Details of Box3	etails of Box3			
Box	Box3			
Base Plane	XYPlane			
Operation	Add Material			
Box Type	From One Point and Diago			
Point 1 Definition	Coordinates			
FD3, Point 1 X Coordinate	1 mm			
FD4, Point 1 Y Coordinate	1.7 mm			
FD5, Point 1 Z Coordinate	10 mm			
Diagonal Definition	Components			
FD6, Diagonal X Component	3 mm			
FD7, Diagonal Y Component	0.5 mm			
📃 FD8, Diagonal Z Component	5 mm			
As Thin/Surface?	No			

Toolbars => || 🔰 Generate

- Main Menu => Tools => Freeze \geq

Engineering und Technology | ZEA-1

Technology for World-Class Research

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 19 von 99

♦ part a): building the geometry – electronic components

- Main Menu => Create => Pattern
- **Details View:**

Helmholtz

Mitglied der

Exercise: Cooling of electronic components IÜLICH bart a): building the geometry – suppress fluid part of pipe FORSCHUNGSZENTRUM Toolbars \Rightarrow \bigcirc (Zoom in) Toolbars => **Toolbars** => **Toolbars RMB:** Suppress Body 👄 🗕 🗆 🗙 A: Steady-State Thermal - DesignModeler File Create Concept Tools Units View Help 🖉 🔜 🛃 📫 🛛 🖸 Undo 📿 Redo 🛛 Select: 🌇 🏹 😯 🔃 🔂 🔂 🔂 🐨 🗐 🏹 🗐 💃 🕀 କ୍ 🔍 🔍 🔍 🎇 🎁 ■ · · · · · · · · · · · · · · · · - 📩 None - 20 ኝ Generate 🛯 🗑 Share Topo gy 🔣 Parameters 🗌 🖪 Extrude 🏟 Revolve 🐁 Sweep 🚯 Skin/Loft 🔄 Thin/Surface 💊 Blend 🔻 💊 Chamfer 🏘 Slice Point Denversion n: 🍰 Import BGD / 📓 Load BGD 🔰 FlowPath 🥒 Blade 🗋 Splitter 🚽 Vista TF Export 🥆 ExportPoints 💷 StageFluid Zone 煮 Sector Cut 🏑 Throat Area 🏕 CAD Import 👻 🖗 Preferences A 1 (国际 9 / 4 🖉 Tree Outline 🖃 -- 🖉 A: Steady-5, te Thermal NSY XPlane VZPlane 🗸 🍘 Box1 D Select Loops / Chains 🗸 🕤 Freezel 🗸 🌍 Box2 Select Smooth Chains 🗸 🔂 Freeze2 Vinder1 Measure Selection 🗸 🔂 Freeze3 🖉 😭 Cylinder2 Selection Filter ۲ Freeze4 🗸 🛅 Boolean1 Isometric View 🗸 🛅 Boolean2 🗸 🗑 Box3 Set → 🕞 Freeze5 Restore Default Pattern1 Q Zoom to Fit (F7) Cursor Mode Sketching Modeling View etails Viev Details of Body 🖉 Look At Body Solid 🧙 Go To Feature 1068.8 mm³ Volume 2380.1 mm² Surface Are 🍡 Go To Body Faces Edges 😭 Select All (Ctrl+ A) Vertices Fluid/Solid Solid Hide Body (F9) Shared Topology Method Default Hide All Other Bodies (Ctrl+ F9) DesignModeler Geometry Type 🔞 Suppress Body Sorm New Part 0.000 Named Selection 🔰 Generate (F5) Model View Print Preview Ready 1 Body: Volume = 1068.8 mm Millimeter Degree

Exercise: Cooling of electronic components building the geometry – centerline of cooling pipe

Electronics and Analytics | ZEA

♦ part a): building the geometry – centerline of cooling pipe

- Sketching Toolboxes => Draw => Line
- Draw line along pipe axis in Graphics Window Important:
 - C-Symbols must be visible when creating the start and end point of the line
 - the line should be slightly longer than the cooling pipe, so that end points can easily be selected

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 23 von 99

- Sketching Toolboxes => Dimensions => Vertical
- Click on red axis and next on starting point of line

♦ part a): building the geometry – centerline of cooling pipe

- Sketching Toolboxes => Dimensions => Vertical
- Click on both end points of line

Main Menu => Concept => Cross Section => Circular (program will automatically leave the sketching modus)

building the geometry – centerline of cooling pipe

A: Steady-State Thermal - DesignModele

🚽 😙 Solid 🚽 🌚 Solid 🚽 😙 Solid 💪 🌚 Solid 🚽 😙 Solid 🚽 😗 Solid 🖉 😗 Solid Sketching Modeling Details Viev Details of Line1 Lines From Points Line1 Point Segments 1 Operation

Add Materia

Ready

⇔ _ □ <u>- ×</u>

ANSYS

start

Main Menu => Concept => Line from points

Details View: \geq Point Segments: Select start point (LMB) **and** end point ('Ctrl' + LMB) from line sketch note: direction important

🔍 रे 🔍 🔍 🔍 💥 🏥 |

StageFluidZ

Revon & Sweep 🚯 Skin/Loft

Thin/Surface 💊 Blend 🔻 💊 Chamfer 🏟 Slice

100.00 (mm)

75.00

torCut 🏼 🎪 ThroatArea 🛛 🕈 CAD Import 👻

25.00

No Selection

5

end

Model View Print Preview

Extru

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 27 von 99

Engineering und Technology | ZEA-1 **Technology for World-Class Research**

Millimeter Degree

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 28 von 99

♦ part a): building the geometry – using symmetry conditions

- Tree Outline => XYPlane (LMB)
- Main Menu => Create => New Plane
- Details View:

Details View 9			
-	Details of SymmetryPlane		1
	Plane	SymmetryPlane](rename)
	Sketches	0	T. ,
	Туре	From Plane]
	Base Plane	XYPlane	
	Transform 1 (RMB)	Rotate about Y	
	FD1, Value 1	-90 °	
	Transform 2 (RMB)	None	1
	Reverse Normal/Z-Axis?	No]
	Flip XY-Axes?	No]
	Export Coordinate System?	No]

Toolbars => 🗍 💈 Generate

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1

Technology for World-Class Research

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 29 von 99

♦ part a): building the geometry – using symmetry conditions

Main Menu => Tools => Symmetry

Details View:

Gemeinschaft

 \triangleright

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1

Technology for World-Class Research

by part b): defining material properties

- Double-Click on 'Engineering Data'
- Notice: Only thermal conductivity is \succ needed for steady-state thermal analysis

7

Ready

Mitglied der Helmholtz-Gemeinschaft

🎦 🔁 🛃 🔜

Filter Engineering

Orthotropic Thermal Conductivity

Thermal

ISO 9001:200

TÜVRhein

⇔ part b): defining material properties – delete standard material

RMB on 'Structural Steel' Delete 👄 🗖 🗖 🗙 ▲ Cooling of electronic mponents - Workbench Edit View Tools Extensions Help File X - Project 🙄 Engineering Data 🛛 🗙 T Filter Engineering Data 🝷 🕂 🗙 Outline of Schen, tic A2: Engineering Data Table of Properties Row 2: Isotropic Ther ▼ ₽ X BC D Δ Thermal R Contents of Engineering Data 📮 🔞 ource Temperature (C) Thermal Conductivity (W m^-1 C^-1) Description 1 1 🚰 Orthotropic Thermal Conductivity 2 21 60.5 * Add Material To Project Structural Steel 3 Copy Paste Click here to * material Delete ¢, Duplicate View Linked Source Refresh From Linked Source Chart of Properties Row 2: Isotropic Thermal Conductivit **⊸** д х 5 Break Link to Source 90 Thermal Conductivity Add to Favorites ~ Default Solid Material For Model **H** 80 Default Fluid/Field Material For Model ò Ű Engineering Data Sources 4 έ 70 Expand All ≥ Δ Collapse All ductivity Property 1 60 W m^... 🔽 🔲 🔲 2 Isotropic Thermal Conductivity 60.5 ŭ 50 æ The 40 15 20 25 30 Temperature [C] Y View All / Customize. Ready Show Progress Show 0 Messages

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 32 von 99

by part b): defining material properties – import materials from xml-file

- Main Menu => File => Import Engineering Data …
- Select 'Material Properties.xml'
- Notice that for Carbon Fiber Laminate an orthotropic thermal conductivity is selected
 => medium conductivity in fiber directions, low conductivity perpendicular to fiber directions
- Return to Project-Sheet:
- 🕨 TB: 📕

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 33 von 99

beta part c): simplified thermal simulation

IÜLICH FORSCHUNGSZENTRUM

.

1

2

? 🖌

? .

? 🖌

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1 **Technology for World-Class Research**

Filter: Name

Filter Options Control Enabled

Lighting Ambient 0.1 Diffuse 0.6

Specular 1

Manage Views

🗟 🗙 🕫 🕸 🛃 🙀

Color

(Mesh 1 Named Selections

> Tep Initial Temperature Analysis Settings

Solution (A6)

Project 😰 Model (A4) 2 Geometry A Coordinate Systems . Symmetry E Connections

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 34 von 99

No Selection

♦ part c): simplified thermal simulation – assigning materials

- Outline => Model => expand Geometry Geometry
- LMB on one Solid (or mark all Solids with identical materials)
- Details View => Material => Assignment => choose material for marked solid(s)

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 35 von 99

♦ part c): simplified thermal simulation – check assignment

- Outline => Model => Geometry (LMB)
- Details View => Display Style => Material

Part c): simplified thermal simulation – meshing remarks

- Notice: A good mesh quality is needed to obtain good results
- Meshing with standard values can lead to an insufficient mesh quality (here scewness for full model)

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 37 von 99

Engineering und Technology | ZEA-1 Technology for World-Class Research

part c): simplified thermal simulation – meshing

- Outline => Mesh
- Toolbars => 🖏 🖬 : Select circumferential lines at end of pipe => RMB => Insert => Sizing

der

Mitglied o

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 40 von 99

inschaft

Geme

Helmholtz

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 41 von 99

Engineering und Technology | ZEA-1

Technology for World-Class Research

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 43 von 99

Helmholtz

der

led Mitgli

b part c): simplified thermal simulation - meshing

- Try to modify number of elements along vertical lines by your own
- Outline => Mesh => RMB => Generate Mesh

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 44 von 99

Engineering und Technology | ZEA-1 Technology for World-Class Research

b part c): simplified thermal simulation - meshing

- Note: All bodies in a part are automatically connected and share nodes at the interface
- The mesh of the electronic components is different from the mesh of the subjacent laminate, here the software automatically generates contact elements (bonded contact)

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 45 von 99

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 46 von 99

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 47 von 99

Exercise: Cooling of electronic components part c): simplified thermal simulation – post-processing

Outline => Steady-State Thermal => Solution => RMB => Insert => Thermal => Temperatures

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 48 von 99

der

Mitglied

Outline => Steady-State Thermal => Solution => RMB Evaluate All Results

♦ part c): simplified thermal simulation – adapted boundary conditions

- Main problem of current solution: heating up of helium while passing the pipe is not considered but is important in this case!
- Possible options:
 - => modify ambient temperature in convection boundary condition by analytically assessing the temperature rise in the helium (for this simple case possible)

=> d) more precise simulation using fluid elements

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1 Technology for World-Class Research

or

Exercise: Cooling of electronic components b part d): simulation with fluid elements – solver units

Main Menu => Units => select 'Metric (tonne,mm,s,°C,mA,N,mV)'

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 51 von 99

part d): simulation with fluid elements – new project

Project Schematic => Project A: Steady-State Thermal => RMB => Duplicate

simulation with fluid elements – activate center line of pipe

- Tree Outline => Parts, Bodies => Line Body => RMB => Unsuppress Body
- Main Menu => File => **Close Design Modeler**

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1 **Technology for World-Class Research**

der

led Mitgli

> part d): simulation with fluid elements – activate center line of pipe

- Project Schematic => Project B => double-click on 'Model'
- Outline => Project => Model => Geometry => Line Body => LMB
- Details View

Details of "Line Body"

B : Copy of Steady-State Thermal - N	echanical [ANSYS Academic Research]			
File Edit View Units Tools Help	🕜 🕂 💈 Solve 🔻 🆓 Sha	w Errors 🏥 👪 🗾 🚸 🗚 🕥 🕶 🖷	🕅 Worksheet i	
😤 hr 😵 🖬 - 🔭 🕅	R R 8- 5 + 0 0 0 0 0	0, 💥 10 🚮 🗃 🗞 🗖 🗸		
F Show Vertices	Show Mesh 🎄 📕 Random Colors 🐼 Annotation			Assembly Center
			j zi Ochese i /	Assembly center
Geometry Wirtual Body Poin	Mass Distributed Mass Relement Orientation	🕺 Thermal Point Mass 🛛 💘 Thickness 🔍	Imported Thickness ULayered Section	
Outline	_			
Filter: Name 🔻				
Project	÷			
Geometry				Acc
🗈 🖓 Part				
→ 🕅 Solid				
i Solid				
🛶 🖓 Solid				
→ 😭 Solid				
→ Golid				
Solid	=			
v u solid → v Solid				
🛶 🕅 Solid				
2 Line Bod				
Symmetry				
Connections				
English Mesh				
, Face Sizing				
Sweep Method		E I		
Ledge Sizing 2				
🗈 ···· 😰 Named Selections				
🖻 🎾 Steady-State Therma	(85)			
Analysis Settings		0.000	5,000 10,000 (mm)	
🧖 Internal Heat General	•	0.000	3.666 (initi)	2-
Details of "Line Body"	#		2.500 7.500	
Suppressed No	Geometry / Print Preview λ Repo	nt Preview /		
Coordinate System Default Coord	inat System			
Reference Temperature By Environme	Text		Association	Timestamn
Offset Type Centroid	Warning Mass properties (volume,	surface area, centroid, moments of inertia) n	nay be inaccurate	Friday, September 04, 2015
Model Type Beam				
- Material				
Assignment				
Nonlinear Effects Yes	New Material			
Thermal Strain Effects Yes	ру ітрог			
Manage Views	👋 Carbon Fibre Laminate			
) 🗟 🗙 🕫 🕸 🗟 💩 🐜	S Carbon Foam			
Total	* Ceramic			
	Stainless Steel			

Engineering und Technology | ZEA-1 Technology for World-Class Research

Details of Effic Dody		
Graphics Properties		
 Definition 		
Suppressed	No	
Coordinate System	Default Coordinate System	
Reference Temperature	By Environment	
Offset Mode	Refresh on Update	
Offset Type	Centroid	
Model Type	Beam	
Material		
Assignment	Stainless Steel	
Nonlinear Effects	Yes	
Thermal Strain Effects	Yes	
+ Bounding Box		
+ Properties		
+ Statistics		

(Note: Assignment not important for calculation but a material has to be selected)

part d): simulation with fluid elements – meshing

- **Outline Mesh**
- Toolbars => 🔍 🕟 select center line => RMB => Insert => Sizing

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1 **Technology for World-Class Research**

No Bias

Bias Type

be part d): simulation with fluid elements - commands

Meshing the center line of pipe with fluid elements and assigning material properties:

Outline => Geometry => Line Body => RMB => Insert => Command

be part d): simulation with fluid elements - commands

Outline => Geometry => Line Body => Commands (APDL) => RMB => Import ...
 'LineBody-Commands.txt'

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 57 von 99

Helmholtz

ied der

Mitgl

part d): simulation with fluid elements - commands

the following commands were imported:

!mesh ET,matid,fluid116 KEYOPT,matid,1,1 KEYOPT,matid,2,1 HD=1.8 CS=3.14159*1.8*1.8/4 R,matid,HD,CS,1 ! material mp,dens,matid,1.634e-12 mp,c,matid,5.2e9

!TEMP degrees of freedom only (no pressure)
!2 nodes and convection information passed to SURF152
!hydraulic diameter in mm
!cross section in mm
!R,matid,hydraulic diameter,cross section,number of flow channels ,,,

!helium density in t/mm³
!helium specific heat capacity in mm²/K/s²

Notice: In principle ANSYS Workbench will consider units – but when using commands in Workbench the user is responsible to enter all values in the correct unit system!

If you run the same simulation using the SI-Unit-System (m, kg, s, V ...) in Workbench you will get incorrect results.

Central Institute for Engineering, Electronics and Analytics | ZEA

b part d): simulation with fluid elements - meshing

- Mesh geometry sequence like in part c)
 - first mesh pipe
 - then mesh foam
 - then generate complete mesh

> part d): simulation with fluid elements – boundary conditions

Convective heat transfer boundary conditions are not needed here:

Outline => Steady-State Thermal => Convection => RMB => Suppress

Specify fluid inlet temperature:

Toolbars => Insert => Temperature

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 60 von 99

b part d): simulation with fluid elements – boundary conditions

Heat transfer from pipe to fluid elements has to be defined:

- Outline => Named Selections => LMB
- Toolbars => Is lect inner surface of pipe => RMB => Create Named Selection

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 61 von 99

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 62 von 99

Engineering und Technology | ZEA-1 Technology for World-Class Research

> part d): simulation with fluid elements – boundary conditions

- Outline => Steady-State Thermal => RMB => Insert => Command
- Outline => Steady-State Thermal => Commands (APDL) => RMB => Import => 'SteadyStateThermal-Commands.txt'

the following commands were imported::

```
finish
/PREP7
|----
! surface effect elements
et.200.152
keyopt,200,8,2
                             !Hf at average T
type,200
! generate surface elements on existing mesh of pipe with closest fluid element node
ndsurf,'ConvectionSurface','Fluid',3
!boundary conditions
cmsel,s,Fluid
sfe,all,,hflux,,2.5e-7 !mass flow rate in t/s (due to symmetry only 1/2 of total mass flow rate)
esel.s.type..200
sfe,all,,conv,,4 !heat transfer coefficient in t/K/s<sup>3</sup>
|-----
```

alls fini /solu

> Central Institute for Engineering, Electronics and Analytics | ZEA

Exercise: Cooling of electronic components b part d): simulation with fluid elements – boundary conditions

Main Menu => Units => Metric (mm, t, N, s, mV, mA) => LMB

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 64 von 99

Introduction to CFD

ScFD (computational fluid dynamics)

- Numerical method for solving partial differential equations representing conservation laws for mass, momentum and energy for fluid flows.
- Domain is discretized into a finite set of control volumes or cells. The discretized domain is called the "grid" or the "mesh." The most commonly used method for CFD is the Finite-Volume-Method.
- Control volume balance for a general flow variable ϕ can be expressed by: rate of change = net flux due to convection + net flux due to diffusion + net rate of creation
- The Navier-Stokes equations are the general form of the equation of motion for a viscous fluid.
- > Typical numerical methods to consider flow turbulence:
 - DNS (direct numerical simulation): all eddies are resolved by a very fine mesh
 => this method is time consuming and requires huge computational resources
 - RANS (Reynolds-Averaged Navier-Stokes): a turbulence model describes all effects of turbulence on the flow
 - => this is the most commonly used method for technical applications; stationary analyses are possible and computational costs are low
 - LES (large eddy simulations): only the largest eddies are resolved by the mesh and smaller eddies are considered by a turbulence model
 => compromise between DNS and RANS

Central Institute for Engineering, Electronics and Analytics | ZEA

part e): CFD simulation – CFX project

 Project => Toolbox => Analysis Systems => Fluid Flow (CFX) => drag and drop (LMB) to Project Schematic

ied der

Mitgli

♦ part e): CFD simulation – CFX project

Project => Project Schematic => Project A => Geometry => drag and drop (LMB) to Project C Geometry

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 68 von 99

Gemeinschaft

der Helmholtz

led

Mitgli

part e): CFD simulation – CFX project

Project => Project Schematic => Geometry Connection => RMB => Delete

Central Institute for Engineering, Electronics and Analytics | ZEA

Open Geometry (double click LMB)

Helmholtz

Mitglied der

Tree Outline => Parts, Bodies => Part => x @ Solid RMB => Unsuppress Body

Gemeinschaft

Mitglied der

Main Manu => File => Close DesignModeler

Central Institute for Engineering, Electronics and Analytics | ZEA

♦ part e): CFD simulation – meshing

Open Meshing:

Project => Project Schematic => Project C => Mesh (double click LMB)

Element Size on end faces of fluid and pipe

- Outline => Project => Mesh => LMB
- Toolbars => Is Is select faces (second face with 'Ctrl') => RMB => Insert => Sizing

part e): CFD simulation – meshing

Constrain Boundary

No

Central Institute for Engineering, Electronics and Analytics | ZEA

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 72 von 99
part e): CFD simulation – meshing

Central Institute for Engineering, Electronics and Analytics | ZEA

Mitgl

- Sweep method for pipe body with manual source (end surface) and 1mm element size in sweep direction
- RMB on end surface of pipe => 'Face Meshing' with default values (=> mapped mesh)
- > Number of element divisions (element size) for pipe wall thickness: 3 (behavior: 'hard')
- Number of element divisions for circumferential lines of pipe: 25 ('hard')
- Number of element divisions in foam body between pipe and laminate: 3 ('hard')
- Number of element divisions in width direction: 10 ('hard') —
- Element size on end surface of foam: 0.4 mm
- Sweep method for foam (default settings in Details View)
- Element size on bodies of electronic components: 0.3 mm
- Number of element divisions for laminate thickness: 3 ('hard').
- Number of element divisions for thickness of electronic components: 2
 - Meshing sequence:

 pipe wall
 fluid body
 complete mesh

Central Institute for Engineering, Electronics and Analytics | ZEA

Asragement System ISO 9001:2008 Www.tto.zcm UWW.tto.zcm US 91081164

Engineering und Technology | ZEA-1 Technology for World-Class Research

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 74 von 99

part e): CFD simulation – meshing

For the setup in CFX 'Named Selections' are needed:

Toolbars => Image: select end surface of fluid => RMB => Create Named Selection

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1 Technology for World-Class Research

Mitgl

♦ part e): CFD simulation – meshing

Try yourself:

- Front surface of fluid body => Named Selection 'Inlet'
- Symmetry face of fluid body => Named Selection 'Symmetry'
- Fluid body => Named Selection 'Fluid'
- Pipe body => Named Selection 'Pipe'
- Foam body => Named Selection 'Foam'
- Carbon fiber laminate body => Named Selection 'Laminate'
- Electronic components => Named Selection 'Electronics'

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 76 von 99

beta options (needed later on)

IULICH FORSCHUNGSZENT

Project Overview:

Main Menu => Tools => Options => Appearance => Beta Options => activate

Central Institute for Engineering, Electronics and Analytics | ZEA

Start Setup:

Project Schematics => Project C => Setup => double click LMB

♦ part e): CFD simulation – setup

Outline => Simulation => Flow Analysis 1 => Analysis Type => double click LMB

Helmholtz

ied der

Mitgli

part e): CFD simulation – setup materials

Import material properties from file

Main Menu => File => Import => CCL ... (choose directory with materials-CFX.ccl file)

	Import CCL Look in: G:Workr_files Import Method: My Compu materials-CFX.ccl Append J:wolters Import Method: Append J:wolters Auto-load materials
Dutpur v Coordinate Frames Transformations Materials Ar Ideal Gas	File name: materials-CFX.cd Open Files of type: CCL Files (*cd *cst) Cancel

Notice:

- thermal conductivity is important for all solids, but orthotropic values for the laminate can not be defined in the GUI (workaround available)
- material properties like density and heat capacity have to be defined for solids but are not important for the results of a steady-state calculation.
- for Helium all thermodynamic and transport properties are important for the flow simulation

Central Institute for Engineering, **Electronics and Analytics | ZEA**

Engineering und Technology | ZEA-1 Technology for World-Class Research

Aluminium Carbon Fibre Laminate

🐱 Helium

Soot 🐻 Steel 💩 Water

Carbon Foam 🐻 Ceramics 🗄 Copper

🐻 Water Ideal Gas Reactions

Expressions, Functions and Additional Variable

♦ part e): CFD simulation – setup materials

Check properties for helium @ 10 bar

Outline => Simulation => Materials => Helium => double click LMB

Outline Material: Helium

	Outline Material: He	lium	
Í	Basic Settings Mat	erial Properties	
Ī	Option	Pure Substance 🗸	
l	Material Group	Constant Property Gases	·
l	Material Description	n	
l	Air at 25 C and 1 atm	(dry)	1
l	Thermodynamic S	tate	Ξ
	Thermodynamic State	Gas 🔻	
l	Coordinate Frame		Ŧ

etails of Helium		
Basic Setungs		
Uption G	eneral Material	
Equation of State	es	8
Option	Value	•
Molar Mass	4 [kg kmol^-1]	
Density	1.634 [kg m^-3]	
Specific Heat Capa	city	8
Option	Value	•
Specific Heat Capacity	5200 [] kg^-1 K^-1]	
Specific Heat Type	Constant Pressure	•
Reference State		Ξ
Option	Specified Point	•
Ref. Temperature	20 [C]	
Reference Pressure	10 [bar]	
Reference Specifi	c Enthalpy	
Ref. Spec. Enthalpy	0. [J/kg]	
Reference Specifi	c Entropy	Ξ
Ref. Spec. Entropy	0. [J/kg/K]	
Transport Properties		
Viscosity		
Option	Value	•
Dynamic Viscosity	2e-05 [kg m^-1 s^-1]	
Thermal Conductivity	ty	
Option	Value	-
Thermal Conductivity	0.15 [W m^-1 K^-1]	
Radiation Properties		Đ
Buoyancy Properties	l	Ξ
Option	Value	•
Thermal Expansivity	0.00341 [K^-1]	
Electromagnetic Properti	es	Ŧ
OK Andu	Class	
Apply	Civac	

Central Institute for Engineering, Electronics and Analytics | ZEA

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 80 von 99

ОК

Apply

Close

♦ part e): CFD simulation – setup domains

For each material a domain has to be defined. Domain interfaces will be generated automatically

Outline => Simulation => Flow Analysis 1 => RMB => Insert => Domain

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 81 von 99

Mitglied der

part e): CFD simulation – setup domains

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 82 von 99

part e): CFD simulation – setup domains

Fluid domain settings – Fluid Models:

Outline Domain: Fluid Details of Fluid III Fluid	arysis 1	■ No
Basic Settings Fluid	Models Initialization Solver Control	
Heat Transfer		
Option	Thermal Energy 🔹	
🔲 Incl. Viscous Dissipa	tion	
Turbulence	8	
Option	Shear Stress Transport 🔹 🗸	
Wall Function	Automatic 🔹	
📄 Blended Near Wal	Il Treatment (Beta) 🕀	
Turbulent Flux Clo	sure for Heat Transfer	
Advanced Turbulence	Control 🗄	
Iransitional lurbu	ience 🖽	
Combustion		
Option	None	
Thermal Radiation	Θ	51
Option	None	
Electromagnetic Mo	del 🛛 🗄	

Notice:

Since temperatures should be calculated the option 'thermal energy' has to be chosen.

Since the Reynolds number is greater then 10000 we will habe a fully turbulent flow – so a turbulence model has to be activated (SST is the preferred one)

Wall functions will consider the viscous boundary layer near the walls, if the mesh is not fine enough.

> Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1

Technology for World-Class Research

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 83 von 99

Apply

Close

♦ part e): CFD simulation – setup domains

Technology for World-Class Research

eq Mitgli

♦ part e): CFD simulation – setup domains

Define Solid Domains

Outline => Simulation => Flow Analysis 1 => RMB => Insert => Domain

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 85 von 99

♦ part e): CFD simulation – setup domains

Solid domain settings (Pipe) – Basic Settings (will automatically open):

Outline Domain: Pipe	e	×
etails of Pipe in Flow A	nalysis 1	
Basic Settings Solid	Models Initialization Solver Control	
Location and Type	-	
Location	Pipe	-
Domain Type	Solid Domain	•
Coordinate Frame	Coord 0	•
Solid Definitions		
Solid 1		רא ר
Solid 1		
Option	Material Library 🗸]
Material	Steel -	
Morphology		
Option	Continuous Solid 🔹	
Domain Models		
Domain Motion	Station	
	Stauonary	
Option		
Mesh Deformation		
Mesh Deformation Option	None	
Mesh Deformation	None	
Mesh Deformation Option	None	
Option Mesh Deformation Option OK Appl	None	

June Donie						
alls of Pipe in F	Analys	s 1		1		
asic Settings	Solid Mode	Initialization	Solver Control			
leat Transfer						Ξ
Option	The	rmal Energy			•	
Thermal Radiat	ion					Ξ
ption	Nor	e			•	
Electromag	netic Model					Ŧ
Solid Motion	1					+
ОК	Apply	Close				
OK utline Doma	Apply ain: Pipe	Close				
OK Itline Doma ils of Pipe in F	Apply ain: Pipe	Close				
OK utline Doma ills of Pipe in F asic Settings	Apply ain: Pipe for Analys Solid Mode	Close is 1 Initialization	Solver Control]		
OK utline Doma uils of Pipe in F asic Settings Domain Init	Apply ain: Pipe for Analys Solid Mode ialization	Close is 1 Initialization	Solver Control	1		
OK utline Dom ills of Pipe in F asic Settings Ø Domain Init Coordinat	Apply ain: Pipe for Analys Solid Mode italization the Frame	Close is 1 Initialization	Solver Control]		
OK utine Domu ils of Pipe in F asic Settings Ø Domain Init Initial Conditio Temperature	Apply ain: Pipe Solid Mode ialization the Frame ons	Close	Solver Control	1		□
OK utine Doma ils of Pipe in F asic Settings Domain Initi Coordinat Initial Conditio Temperature Option	Apply ain: Pipe for Analys Solid Mode ialization re Frame ons	Close is 1	Solver Control	1		□ □
OK utline Doma ils of Pipe in F asic Settings Domain Initi Coordinat Initial Conditio Temperature Option Temperature	Apply ain: Pipe Rom Analys Solid Mode ialization the Frame ons	Close is 1 Initialization Automatic with Value 20 [C]	Solver Control]		

- Try yourself to set up domains for:
- Foam

Mitglied der

- Laminate
- Electronics

Central Institute for Engineering, Electronics and Analytics | ZEA

> part e): CFD simulation – boundary conditions

Heat transfer for interfaces

Outline => Simulation => Interfaces => Default Fluid Solid Interface => double click LMB

ed der

Part e): CFD simulation – boundary conditions

Flow conditions

der

ed

Mitgli

Outline => Simulation => Flow Analysis 1 => Fluid => RMB => Insert => Boundary

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 88 von 99

♦ part e): CFD simulation – boundary conditions

Inlet conditions for helium flow

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 89 von 99

be part e): CFD simulation – boundary conditions

Outline => Simulation => Flow Analysis 1 => Fluid => RMB => Insert => Boundary Boundary name: 'Outlet'

Seite 90 von 99

Outline => Simulation => Flow Analysis 1 => Fluid => RMB => Insert => Boundary Boundary name: 'Symmetry' => location 'Symmetry' (no further settings needed)

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1

Central Institute for Engineering, Electronics and Analytics | ZEA

part e): CFD simulation – boundary conditions

Heat generation

Outline => Simulation => Flow Analysis 1 => Electgronics => RMB => Insert => Subdomain

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 91 von 99

Part e): CFD simulation – boundary conditions

Inlet conditions for helium flow

Notice:

- The heat is generated on all domain bodies
- => Named Selection 'Electronics' can be selected here again

Outline Subdomain	n: Heat ronics in Flow Analysis 1	×
Basic Settinger So	urces	
Sources		Ξ
quation Sources		
Energy		
Energy		
Energy Option	Total Source	
Option Total Source	[Total Source 18 [kg m^2 s^-3]	
Energy Option Total Source Total Source	Total Source 18 [kg m^2 s^-3] Coefficient	•

Since the calculation is done for a half-model only half of the total heat generation (1/2 of 36 W) is considered

Central Institute for Engineering, Electronics and Analytics | ZEA

part e): CFD simulation – solution control

Increase convergency by an aggressive 'Length Scale Option'

Outline => Simulation => Flow Analysis 1 => Solver => Solver Control => double click LMB

Management System UVRheinland ZERTIFIZIERT WWW.Succom

Leave Pre-Processor

Main Menu => Close CFX-Pre

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 93 von 99

part e): CFD simulation – solve problem

- Main Menu => View => Properties (must be activated)
- Project Schematic => Project C => Solution => LMB

Mitglied der

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 95 von 99

part e): CFD simulation – post-processing results

Project Schematic => Project C => Results => double click LMB

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 96 von 99

Ger

Helmholtz

der

led

Mitgli

Exercise: Cooling of electronic components ♦ part e): CFD simulation – post-processing results

Main Menu => Insert => Contour => Name: 'Temperatures'

Central Institute for Engineering, Electronics and Analytics | ZEA

Exercise: Cooling of electronic components part e): CFD simulation – post-processing results

Details View

ied der Helmholtz

Mitgli

Engineering und Technology | ZEA-1 Technology for World-Class Research

ZEA – Technology for World-Class-Research

Thank you for your participation & attention! Any questions ...?

Central Institute for Engineering, Electronics and Analytics | ZEA

Engineering und Technology | ZEA-1

Technology for World-Class Research

Georgian German Science Bridge – Autumn Lectures 2015.10.12.-13. J. Wolters – ZEA-1 Seite 99 von 99